( y + \frac { y ^ { 3 } } { 3 } + \frac { x ^ { 2 } } { 2 } ) d x + \frac { 1 } { 4 } ( x + x y ^ { 2 } ) d y = 0
Whakaoti mō d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&x=0\text{ or }y=\frac{7^{\frac{2}{3}}}{7}\left(\sqrt[3]{\frac{\sqrt{441x^{4}+875}}{7}-3x^{2}}-\sqrt[3]{\frac{\sqrt{441x^{4}+875}}{7}+3x^{2}}\right)\end{matrix}\right.
Whakaoti mō x
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x=\frac{\sqrt{-42y^{3}-90y}}{6}\text{; }x=-\frac{\sqrt{-42y^{3}-90y}}{6}\text{, }&y\leq 0\\x\in \mathrm{R}\text{, }&d=0\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
12\left(y+\frac{y^{3}}{3}+\frac{x^{2}}{2}\right)dx+3\left(x+xy^{2}\right)dy=0
Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2,4.
12\left(y+\frac{2y^{3}}{6}+\frac{3x^{2}}{6}\right)dx+3\left(x+xy^{2}\right)dy=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 3 me 2 ko 6. Whakareatia \frac{y^{3}}{3} ki te \frac{2}{2}. Whakareatia \frac{x^{2}}{2} ki te \frac{3}{3}.
12\left(y+\frac{2y^{3}+3x^{2}}{6}\right)dx+3\left(x+xy^{2}\right)dy=0
Tā te mea he rite te tauraro o \frac{2y^{3}}{6} me \frac{3x^{2}}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\left(12y+12\times \frac{2y^{3}+3x^{2}}{6}\right)dx+3\left(x+xy^{2}\right)dy=0
Whakamahia te āhuatanga tohatoha hei whakarea te 12 ki te y+\frac{2y^{3}+3x^{2}}{6}.
\left(12y+2\left(2y^{3}+3x^{2}\right)\right)dx+3\left(x+xy^{2}\right)dy=0
Whakakorea atu te tauwehe pūnoa nui rawa 6 i roto i te 12 me te 6.
\left(12y+4y^{3}+6x^{2}\right)dx+3\left(x+xy^{2}\right)dy=0
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 2y^{3}+3x^{2}.
\left(12yd+4y^{3}d+6x^{2}d\right)x+3\left(x+xy^{2}\right)dy=0
Whakamahia te āhuatanga tohatoha hei whakarea te 12y+4y^{3}+6x^{2} ki te d.
12ydx+4y^{3}dx+6dx^{3}+3\left(x+xy^{2}\right)dy=0
Whakamahia te āhuatanga tohatoha hei whakarea te 12yd+4y^{3}d+6x^{2}d ki te x.
12ydx+4y^{3}dx+6dx^{3}+\left(3x+3xy^{2}\right)dy=0
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+xy^{2}.
12ydx+4y^{3}dx+6dx^{3}+\left(3xd+3xy^{2}d\right)y=0
Whakamahia te āhuatanga tohatoha hei whakarea te 3x+3xy^{2} ki te d.
12ydx+4y^{3}dx+6dx^{3}+3xdy+3xdy^{3}=0
Whakamahia te āhuatanga tohatoha hei whakarea te 3xd+3xy^{2}d ki te y.
15ydx+4y^{3}dx+6dx^{3}+3xdy^{3}=0
Pahekotia te 12ydx me 3xdy, ka 15ydx.
15ydx+7y^{3}dx+6dx^{3}=0
Pahekotia te 4y^{3}dx me 3xdy^{3}, ka 7y^{3}dx.
\left(15yx+7y^{3}x+6x^{3}\right)d=0
Pahekotia ngā kīanga tau katoa e whai ana i te d.
\left(6x^{3}+7xy^{3}+15xy\right)d=0
He hanga arowhānui tō te whārite.
d=0
Whakawehe 0 ki te 15yx+7y^{3}x+6x^{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}