Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-y^{2}-\left(x+y\right)^{2}+2y\left(y-x\right)
Whakaarohia te \left(x-y\right)\left(x+y\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-y^{2}-\left(x^{2}+2xy+y^{2}\right)+2y\left(y-x\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+y\right)^{2}.
x^{2}-y^{2}-x^{2}-2xy-y^{2}+2y\left(y-x\right)
Hei kimi i te tauaro o x^{2}+2xy+y^{2}, kimihia te tauaro o ia taurangi.
-y^{2}-2xy-y^{2}+2y\left(y-x\right)
Pahekotia te x^{2} me -x^{2}, ka 0.
-2y^{2}-2xy+2y\left(y-x\right)
Pahekotia te -y^{2} me -y^{2}, ka -2y^{2}.
-2y^{2}-2xy+2y^{2}-2yx
Whakamahia te āhuatanga tohatoha hei whakarea te 2y ki te y-x.
-2xy-2yx
Pahekotia te -2y^{2} me 2y^{2}, ka 0.
-4xy
Pahekotia te -2xy me -2yx, ka -4xy.
x^{2}-y^{2}-\left(x+y\right)^{2}+2y\left(y-x\right)
Whakaarohia te \left(x-y\right)\left(x+y\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-y^{2}-\left(x^{2}+2xy+y^{2}\right)+2y\left(y-x\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+y\right)^{2}.
x^{2}-y^{2}-x^{2}-2xy-y^{2}+2y\left(y-x\right)
Hei kimi i te tauaro o x^{2}+2xy+y^{2}, kimihia te tauaro o ia taurangi.
-y^{2}-2xy-y^{2}+2y\left(y-x\right)
Pahekotia te x^{2} me -x^{2}, ka 0.
-2y^{2}-2xy+2y\left(y-x\right)
Pahekotia te -y^{2} me -y^{2}, ka -2y^{2}.
-2y^{2}-2xy+2y^{2}-2yx
Whakamahia te āhuatanga tohatoha hei whakarea te 2y ki te y-x.
-2xy-2yx
Pahekotia te -2y^{2} me 2y^{2}, ka 0.
-4xy
Pahekotia te -2xy me -2yx, ka -4xy.