Whakaoti mō x
x=\frac{y^{2}+80y+850}{y+80}
y\neq -80
Whakaoti mō y (complex solution)
y=\frac{-\sqrt{x^{2}+160x+3000}+x-80}{2}
y=\frac{\sqrt{x^{2}+160x+3000}+x-80}{2}
Whakaoti mō y
y=\frac{-\sqrt{x^{2}+160x+3000}+x-80}{2}
y=\frac{\sqrt{x^{2}+160x+3000}+x-80}{2}\text{, }x\geq 10\sqrt{34}-80\text{ or }x\leq -10\sqrt{34}-80
Graph
Tohaina
Kua tāruatia ki te papatopenga
400x+5xy-400y-5y^{2}=4250
Whakamahia te āhuatanga tohatoha hei whakarea te x-y ki te 400+5y.
400x+5xy-5y^{2}=4250+400y
Me tāpiri te 400y ki ngā taha e rua.
400x+5xy=4250+400y+5y^{2}
Me tāpiri te 5y^{2} ki ngā taha e rua.
\left(400+5y\right)x=4250+400y+5y^{2}
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(5y+400\right)x=5y^{2}+400y+4250
He hanga arowhānui tō te whārite.
\frac{\left(5y+400\right)x}{5y+400}=\frac{5y^{2}+400y+4250}{5y+400}
Whakawehea ngā taha e rua ki te 400+5y.
x=\frac{5y^{2}+400y+4250}{5y+400}
Mā te whakawehe ki te 400+5y ka wetekia te whakareanga ki te 400+5y.
x=\frac{y^{2}+80y+850}{y+80}
Whakawehe 4250+400y+5y^{2} ki te 400+5y.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}