Tīpoka ki ngā ihirangi matua
Whakaoti mō A
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{3}-3x^{2}y+3xy^{2}-y^{3}=A\left(x+y\right)
Whakamahia te ture huarua \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} hei whakaroha \left(x-y\right)^{3}.
x^{3}-3x^{2}y+3xy^{2}-y^{3}=Ax+Ay
Whakamahia te āhuatanga tohatoha hei whakarea te A ki te x+y.
Ax+Ay=x^{3}-3x^{2}y+3xy^{2}-y^{3}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(x+y\right)A=x^{3}-3x^{2}y+3xy^{2}-y^{3}
Pahekotia ngā kīanga tau katoa e whai ana i te A.
\left(x+y\right)A=x^{3}+3xy^{2}-y^{3}-3yx^{2}
He hanga arowhānui tō te whārite.
\frac{\left(x+y\right)A}{x+y}=\frac{\left(x-y\right)^{3}}{x+y}
Whakawehea ngā taha e rua ki te x+y.
A=\frac{\left(x-y\right)^{3}}{x+y}
Mā te whakawehe ki te x+y ka wetekia te whakareanga ki te x+y.