Whakaoti mō x
x=\left(-4-i\right)y-2i
Whakaoti mō y
y=\left(-\frac{4}{17}+\frac{1}{17}i\right)x+\left(-\frac{2}{17}-\frac{8}{17}i\right)
Tohaina
Kua tāruatia ki te papatopenga
x-y+iy-i=2x+3y+\left(2y+1\right)i
Whakamahia te āhuatanga tohatoha hei whakarea te y-1 ki te i.
x+\left(-1+i\right)y-i=2x+3y+\left(2y+1\right)i
Pahekotia te -y me iy, ka \left(-1+i\right)y.
x+\left(-1+i\right)y-i=2x+3y+2iy+i
Whakamahia te āhuatanga tohatoha hei whakarea te 2y+1 ki te i.
x+\left(-1+i\right)y-i=2x+\left(3+2i\right)y+i
Pahekotia te 3y me 2iy, ka \left(3+2i\right)y.
x+\left(-1+i\right)y-i-2x=\left(3+2i\right)y+i
Tangohia te 2x mai i ngā taha e rua.
-x+\left(-1+i\right)y-i=\left(3+2i\right)y+i
Pahekotia te x me -2x, ka -x.
-x-i=\left(3+2i\right)y+i-\left(-1+i\right)y
Tangohia te \left(-1+i\right)y mai i ngā taha e rua.
-x-i=\left(4+i\right)y+i
Pahekotia te \left(3+2i\right)y me \left(1-i\right)y, ka \left(4+i\right)y.
-x=\left(4+i\right)y+i+i
Me tāpiri te i ki ngā taha e rua.
-x=\left(4+i\right)y+2i
Tāpirihia te i ki te i, ka 2i.
\frac{-x}{-1}=\frac{\left(4+i\right)y+2i}{-1}
Whakawehea ngā taha e rua ki te -1.
x=\frac{\left(4+i\right)y+2i}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x=\left(-4-i\right)y-2i
Whakawehe \left(4+i\right)y+2i ki te -1.
x-y+iy-i=2x+3y+\left(2y+1\right)i
Whakamahia te āhuatanga tohatoha hei whakarea te y-1 ki te i.
x+\left(-1+i\right)y-i=2x+3y+\left(2y+1\right)i
Pahekotia te -y me iy, ka \left(-1+i\right)y.
x+\left(-1+i\right)y-i=2x+3y+2iy+i
Whakamahia te āhuatanga tohatoha hei whakarea te 2y+1 ki te i.
x+\left(-1+i\right)y-i=2x+\left(3+2i\right)y+i
Pahekotia te 3y me 2iy, ka \left(3+2i\right)y.
x+\left(-1+i\right)y-i-\left(3+2i\right)y=2x+i
Tangohia te \left(3+2i\right)y mai i ngā taha e rua.
x+\left(-4-i\right)y-i=2x+i
Pahekotia te \left(-1+i\right)y me \left(-3-2i\right)y, ka \left(-4-i\right)y.
\left(-4-i\right)y-i=2x+i-x
Tangohia te x mai i ngā taha e rua.
\left(-4-i\right)y-i=x+i
Pahekotia te 2x me -x, ka x.
\left(-4-i\right)y=x+i+i
Me tāpiri te i ki ngā taha e rua.
\left(-4-i\right)y=x+2i
Tāpirihia te i ki te i, ka 2i.
\frac{\left(-4-i\right)y}{-4-i}=\frac{x+2i}{-4-i}
Whakawehea ngā taha e rua ki te -4-i.
y=\frac{x+2i}{-4-i}
Mā te whakawehe ki te -4-i ka wetekia te whakareanga ki te -4-i.
y=\left(-\frac{4}{17}+\frac{1}{17}i\right)x+\left(-\frac{2}{17}-\frac{8}{17}i\right)
Whakawehe x+2i ki te -4-i.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}