Whakaoti mō x (complex solution)
x=\frac{-i\times 3\sqrt{21}+15}{2}\approx 7.5-6.873863542i
x=\frac{15+i\times 3\sqrt{21}}{2}\approx 7.5+6.873863542i
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-7.5-\left(-7.5\right)=\frac{3\sqrt{21}i}{2}-\left(-7.5\right) x-7.5-\left(-7.5\right)=-\frac{3\sqrt{21}i}{2}-\left(-7.5\right)
Me tāpiri 7.5 ki ngā taha e rua o te whārite.
x=\frac{3\sqrt{21}i}{2}-\left(-7.5\right) x=-\frac{3\sqrt{21}i}{2}-\left(-7.5\right)
Mā te tango i te -7.5 i a ia ake anō ka toe ko te 0.
x=\frac{15+3\sqrt{21}i}{2}
Tango -7.5 mai i \frac{3i\sqrt{21}}{2}.
x=\frac{-3\sqrt{21}i+15}{2}
Tango -7.5 mai i -\frac{3i\sqrt{21}}{2}.
x=\frac{15+3\sqrt{21}i}{2} x=\frac{-3\sqrt{21}i+15}{2}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}