Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-12x+35=3
Whakamahia te āhuatanga tuaritanga hei whakarea te x-7 ki te x-5 ka whakakotahi i ngā kupu rite.
x^{2}-12x+35-3=0
Tangohia te 3 mai i ngā taha e rua.
x^{2}-12x+32=0
Tangohia te 3 i te 35, ka 32.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 32}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -12 mō b, me 32 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 32}}{2}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144-128}}{2}
Whakareatia -4 ki te 32.
x=\frac{-\left(-12\right)±\sqrt{16}}{2}
Tāpiri 144 ki te -128.
x=\frac{-\left(-12\right)±4}{2}
Tuhia te pūtakerua o te 16.
x=\frac{12±4}{2}
Ko te tauaro o -12 ko 12.
x=\frac{16}{2}
Nā, me whakaoti te whārite x=\frac{12±4}{2} ina he tāpiri te ±. Tāpiri 12 ki te 4.
x=8
Whakawehe 16 ki te 2.
x=\frac{8}{2}
Nā, me whakaoti te whārite x=\frac{12±4}{2} ina he tango te ±. Tango 4 mai i 12.
x=4
Whakawehe 8 ki te 2.
x=8 x=4
Kua oti te whārite te whakatau.
x^{2}-12x+35=3
Whakamahia te āhuatanga tuaritanga hei whakarea te x-7 ki te x-5 ka whakakotahi i ngā kupu rite.
x^{2}-12x=3-35
Tangohia te 35 mai i ngā taha e rua.
x^{2}-12x=-32
Tangohia te 35 i te 3, ka -32.
x^{2}-12x+\left(-6\right)^{2}=-32+\left(-6\right)^{2}
Whakawehea te -12, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -6. Nā, tāpiria te pūrua o te -6 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-12x+36=-32+36
Pūrua -6.
x^{2}-12x+36=4
Tāpiri -32 ki te 36.
\left(x-6\right)^{2}=4
Tauwehea x^{2}-12x+36. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-6=2 x-6=-2
Whakarūnātia.
x=8 x=4
Me tāpiri 6 ki ngā taha e rua o te whārite.