Whakaoti mō m (complex solution)
\left\{\begin{matrix}m=\frac{20x^{2}-280x+981}{20no\left(x+6\right)x^{2}}\text{, }&x\neq 0\text{ and }o\neq 0\text{ and }x\neq -6\text{ and }n\neq 0\\m\in \mathrm{C}\text{, }&\left(x=\frac{\sqrt{5}i}{10}+7\text{ and }n=0\right)\text{ or }\left(x=\frac{\sqrt{5}i}{10}+7\text{ and }o=0\right)\text{ or }\left(x=-\frac{\sqrt{5}i}{10}+7\text{ and }n=0\right)\text{ or }\left(x=-\frac{\sqrt{5}i}{10}+7\text{ and }o=0\right)\end{matrix}\right.
Whakaoti mō n (complex solution)
\left\{\begin{matrix}n=\frac{20x^{2}-280x+981}{20mo\left(x+6\right)x^{2}}\text{, }&x\neq 0\text{ and }o\neq 0\text{ and }x\neq -6\text{ and }m\neq 0\\n\in \mathrm{C}\text{, }&\left(x=\frac{\sqrt{5}i}{10}+7\text{ and }m=0\right)\text{ or }\left(x=\frac{\sqrt{5}i}{10}+7\text{ and }o=0\right)\text{ or }\left(x=-\frac{\sqrt{5}i}{10}+7\text{ and }m=0\right)\text{ or }\left(x=-\frac{\sqrt{5}i}{10}+7\text{ and }o=0\right)\end{matrix}\right.
Whakaoti mō m
m=\frac{20x^{2}-280x+981}{20no\left(x+6\right)x^{2}}
x\neq 0\text{ and }o\neq 0\text{ and }x\neq -6\text{ and }n\neq 0
Whakaoti mō n
n=\frac{20x^{2}-280x+981}{20mo\left(x+6\right)x^{2}}
x\neq 0\text{ and }o\neq 0\text{ and }x\neq -6\text{ and }m\neq 0
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x-7\right)^{2}-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Whakareatia te x ki te x, ka x^{2}.
x^{2}-14x+49-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-7\right)^{2}.
x^{2}-14x+49-\left(6x^{2}+x^{3}\right)mon=-\frac{1}{20}
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2} ki te 6+x.
x^{2}-14x+49-\left(6x^{2}m+x^{3}m\right)on=-\frac{1}{20}
Whakamahia te āhuatanga tohatoha hei whakarea te 6x^{2}+x^{3} ki te m.
x^{2}-14x+49-\left(6x^{2}mo+x^{3}mo\right)n=-\frac{1}{20}
Whakamahia te āhuatanga tohatoha hei whakarea te 6x^{2}m+x^{3}m ki te o.
x^{2}-14x+49-\left(6x^{2}mon+x^{3}mon\right)=-\frac{1}{20}
Whakamahia te āhuatanga tohatoha hei whakarea te 6x^{2}mo+x^{3}mo ki te n.
x^{2}-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}
Hei kimi i te tauaro o 6x^{2}mon+x^{3}mon, kimihia te tauaro o ia taurangi.
-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}
Tangohia te x^{2} mai i ngā taha e rua.
49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x
Me tāpiri te 14x ki ngā taha e rua.
-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x-49
Tangohia te 49 mai i ngā taha e rua.
-6x^{2}mon-x^{3}mon=-\frac{981}{20}-x^{2}+14x
Tangohia te 49 i te -\frac{1}{20}, ka -\frac{981}{20}.
\left(-6x^{2}on-x^{3}on\right)m=-\frac{981}{20}-x^{2}+14x
Pahekotia ngā kīanga tau katoa e whai ana i te m.
\left(-nox^{3}-6nox^{2}\right)m=-x^{2}+14x-\frac{981}{20}
He hanga arowhānui tō te whārite.
\frac{\left(-nox^{3}-6nox^{2}\right)m}{-nox^{3}-6nox^{2}}=\frac{-x^{2}+14x-\frac{981}{20}}{-nox^{3}-6nox^{2}}
Whakawehea ngā taha e rua ki te -6x^{2}on-x^{3}on.
m=\frac{-x^{2}+14x-\frac{981}{20}}{-nox^{3}-6nox^{2}}
Mā te whakawehe ki te -6x^{2}on-x^{3}on ka wetekia te whakareanga ki te -6x^{2}on-x^{3}on.
m=-\frac{-20x^{2}+280x-981}{20no\left(x+6\right)x^{2}}
Whakawehe -x^{2}+14x-\frac{981}{20} ki te -6x^{2}on-x^{3}on.
\left(x-7\right)^{2}-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Whakareatia te x ki te x, ka x^{2}.
x^{2}-14x+49-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-7\right)^{2}.
x^{2}-14x+49-\left(6x^{2}+x^{3}\right)mon=-\frac{1}{20}
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2} ki te 6+x.
x^{2}-14x+49-\left(6x^{2}m+x^{3}m\right)on=-\frac{1}{20}
Whakamahia te āhuatanga tohatoha hei whakarea te 6x^{2}+x^{3} ki te m.
x^{2}-14x+49-\left(6x^{2}mo+x^{3}mo\right)n=-\frac{1}{20}
Whakamahia te āhuatanga tohatoha hei whakarea te 6x^{2}m+x^{3}m ki te o.
x^{2}-14x+49-\left(6x^{2}mon+x^{3}mon\right)=-\frac{1}{20}
Whakamahia te āhuatanga tohatoha hei whakarea te 6x^{2}mo+x^{3}mo ki te n.
x^{2}-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}
Hei kimi i te tauaro o 6x^{2}mon+x^{3}mon, kimihia te tauaro o ia taurangi.
-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}
Tangohia te x^{2} mai i ngā taha e rua.
49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x
Me tāpiri te 14x ki ngā taha e rua.
-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x-49
Tangohia te 49 mai i ngā taha e rua.
-6x^{2}mon-x^{3}mon=-\frac{981}{20}-x^{2}+14x
Tangohia te 49 i te -\frac{1}{20}, ka -\frac{981}{20}.
\left(-6x^{2}mo-x^{3}mo\right)n=-\frac{981}{20}-x^{2}+14x
Pahekotia ngā kīanga tau katoa e whai ana i te n.
\left(-mox^{3}-6mox^{2}\right)n=-x^{2}+14x-\frac{981}{20}
He hanga arowhānui tō te whārite.
\frac{\left(-mox^{3}-6mox^{2}\right)n}{-mox^{3}-6mox^{2}}=\frac{-x^{2}+14x-\frac{981}{20}}{-mox^{3}-6mox^{2}}
Whakawehea ngā taha e rua ki te -6x^{2}mo-x^{3}mo.
n=\frac{-x^{2}+14x-\frac{981}{20}}{-mox^{3}-6mox^{2}}
Mā te whakawehe ki te -6x^{2}mo-x^{3}mo ka wetekia te whakareanga ki te -6x^{2}mo-x^{3}mo.
n=-\frac{-20x^{2}+280x-981}{20mo\left(x+6\right)x^{2}}
Whakawehe -x^{2}+14x-\frac{981}{20} ki te -6x^{2}mo-x^{3}mo.
\left(x-7\right)^{2}-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Whakareatia te x ki te x, ka x^{2}.
x^{2}-14x+49-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-7\right)^{2}.
x^{2}-14x+49-\left(6x^{2}+x^{3}\right)mon=-\frac{1}{20}
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2} ki te 6+x.
x^{2}-14x+49-\left(6x^{2}m+x^{3}m\right)on=-\frac{1}{20}
Whakamahia te āhuatanga tohatoha hei whakarea te 6x^{2}+x^{3} ki te m.
x^{2}-14x+49-\left(6x^{2}mo+x^{3}mo\right)n=-\frac{1}{20}
Whakamahia te āhuatanga tohatoha hei whakarea te 6x^{2}m+x^{3}m ki te o.
x^{2}-14x+49-\left(6x^{2}mon+x^{3}mon\right)=-\frac{1}{20}
Whakamahia te āhuatanga tohatoha hei whakarea te 6x^{2}mo+x^{3}mo ki te n.
x^{2}-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}
Hei kimi i te tauaro o 6x^{2}mon+x^{3}mon, kimihia te tauaro o ia taurangi.
-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}
Tangohia te x^{2} mai i ngā taha e rua.
49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x
Me tāpiri te 14x ki ngā taha e rua.
-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x-49
Tangohia te 49 mai i ngā taha e rua.
-6x^{2}mon-x^{3}mon=-\frac{981}{20}-x^{2}+14x
Tangohia te 49 i te -\frac{1}{20}, ka -\frac{981}{20}.
\left(-6x^{2}on-x^{3}on\right)m=-\frac{981}{20}-x^{2}+14x
Pahekotia ngā kīanga tau katoa e whai ana i te m.
\left(-nox^{3}-6nox^{2}\right)m=-x^{2}+14x-\frac{981}{20}
He hanga arowhānui tō te whārite.
\frac{\left(-nox^{3}-6nox^{2}\right)m}{-nox^{3}-6nox^{2}}=\frac{-x^{2}+14x-\frac{981}{20}}{-nox^{3}-6nox^{2}}
Whakawehea ngā taha e rua ki te -6x^{2}on-x^{3}on.
m=\frac{-x^{2}+14x-\frac{981}{20}}{-nox^{3}-6nox^{2}}
Mā te whakawehe ki te -6x^{2}on-x^{3}on ka wetekia te whakareanga ki te -6x^{2}on-x^{3}on.
m=\frac{-20x^{2}+280x-981}{-20no\left(x+6\right)x^{2}}
Whakawehe -\frac{981}{20}-x^{2}+14x ki te -6x^{2}on-x^{3}on.
\left(x-7\right)^{2}-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Whakareatia te x ki te x, ka x^{2}.
x^{2}-14x+49-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-7\right)^{2}.
x^{2}-14x+49-\left(6x^{2}+x^{3}\right)mon=-\frac{1}{20}
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2} ki te 6+x.
x^{2}-14x+49-\left(6x^{2}m+x^{3}m\right)on=-\frac{1}{20}
Whakamahia te āhuatanga tohatoha hei whakarea te 6x^{2}+x^{3} ki te m.
x^{2}-14x+49-\left(6x^{2}mo+x^{3}mo\right)n=-\frac{1}{20}
Whakamahia te āhuatanga tohatoha hei whakarea te 6x^{2}m+x^{3}m ki te o.
x^{2}-14x+49-\left(6x^{2}mon+x^{3}mon\right)=-\frac{1}{20}
Whakamahia te āhuatanga tohatoha hei whakarea te 6x^{2}mo+x^{3}mo ki te n.
x^{2}-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}
Hei kimi i te tauaro o 6x^{2}mon+x^{3}mon, kimihia te tauaro o ia taurangi.
-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}
Tangohia te x^{2} mai i ngā taha e rua.
49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x
Me tāpiri te 14x ki ngā taha e rua.
-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x-49
Tangohia te 49 mai i ngā taha e rua.
-6x^{2}mon-x^{3}mon=-\frac{981}{20}-x^{2}+14x
Tangohia te 49 i te -\frac{1}{20}, ka -\frac{981}{20}.
\left(-6x^{2}mo-x^{3}mo\right)n=-\frac{981}{20}-x^{2}+14x
Pahekotia ngā kīanga tau katoa e whai ana i te n.
\left(-mox^{3}-6mox^{2}\right)n=-x^{2}+14x-\frac{981}{20}
He hanga arowhānui tō te whārite.
\frac{\left(-mox^{3}-6mox^{2}\right)n}{-mox^{3}-6mox^{2}}=\frac{-x^{2}+14x-\frac{981}{20}}{-mox^{3}-6mox^{2}}
Whakawehea ngā taha e rua ki te -6x^{2}mo-x^{3}mo.
n=\frac{-x^{2}+14x-\frac{981}{20}}{-mox^{3}-6mox^{2}}
Mā te whakawehe ki te -6x^{2}mo-x^{3}mo ka wetekia te whakareanga ki te -6x^{2}mo-x^{3}mo.
n=\frac{-20x^{2}+280x-981}{-20mo\left(x+6\right)x^{2}}
Whakawehe -\frac{981}{20}-x^{2}+14x ki te -6x^{2}mo-x^{3}mo.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}