Tīpoka ki ngā ihirangi matua
Whakaoti mō m (complex solution)
Tick mark Image
Whakaoti mō n (complex solution)
Tick mark Image
Whakaoti mō m
Tick mark Image
Whakaoti mō n
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x-7\right)^{2}-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Whakareatia te x ki te x, ka x^{2}.
x^{2}-14x+49-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-7\right)^{2}.
x^{2}-14x+49-\left(6x^{2}+x^{3}\right)mon=-\frac{1}{20}
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2} ki te 6+x.
x^{2}-14x+49-\left(6x^{2}m+x^{3}m\right)on=-\frac{1}{20}
Whakamahia te āhuatanga tohatoha hei whakarea te 6x^{2}+x^{3} ki te m.
x^{2}-14x+49-\left(6x^{2}mo+x^{3}mo\right)n=-\frac{1}{20}
Whakamahia te āhuatanga tohatoha hei whakarea te 6x^{2}m+x^{3}m ki te o.
x^{2}-14x+49-\left(6x^{2}mon+x^{3}mon\right)=-\frac{1}{20}
Whakamahia te āhuatanga tohatoha hei whakarea te 6x^{2}mo+x^{3}mo ki te n.
x^{2}-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}
Hei kimi i te tauaro o 6x^{2}mon+x^{3}mon, kimihia te tauaro o ia taurangi.
-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}
Tangohia te x^{2} mai i ngā taha e rua.
49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x
Me tāpiri te 14x ki ngā taha e rua.
-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x-49
Tangohia te 49 mai i ngā taha e rua.
-6x^{2}mon-x^{3}mon=-\frac{981}{20}-x^{2}+14x
Tangohia te 49 i te -\frac{1}{20}, ka -\frac{981}{20}.
\left(-6x^{2}on-x^{3}on\right)m=-\frac{981}{20}-x^{2}+14x
Pahekotia ngā kīanga tau katoa e whai ana i te m.
\left(-nox^{3}-6nox^{2}\right)m=-x^{2}+14x-\frac{981}{20}
He hanga arowhānui tō te whārite.
\frac{\left(-nox^{3}-6nox^{2}\right)m}{-nox^{3}-6nox^{2}}=\frac{-x^{2}+14x-\frac{981}{20}}{-nox^{3}-6nox^{2}}
Whakawehea ngā taha e rua ki te -6x^{2}on-x^{3}on.
m=\frac{-x^{2}+14x-\frac{981}{20}}{-nox^{3}-6nox^{2}}
Mā te whakawehe ki te -6x^{2}on-x^{3}on ka wetekia te whakareanga ki te -6x^{2}on-x^{3}on.
m=-\frac{-20x^{2}+280x-981}{20no\left(x+6\right)x^{2}}
Whakawehe -x^{2}+14x-\frac{981}{20} ki te -6x^{2}on-x^{3}on.
\left(x-7\right)^{2}-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Whakareatia te x ki te x, ka x^{2}.
x^{2}-14x+49-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-7\right)^{2}.
x^{2}-14x+49-\left(6x^{2}+x^{3}\right)mon=-\frac{1}{20}
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2} ki te 6+x.
x^{2}-14x+49-\left(6x^{2}m+x^{3}m\right)on=-\frac{1}{20}
Whakamahia te āhuatanga tohatoha hei whakarea te 6x^{2}+x^{3} ki te m.
x^{2}-14x+49-\left(6x^{2}mo+x^{3}mo\right)n=-\frac{1}{20}
Whakamahia te āhuatanga tohatoha hei whakarea te 6x^{2}m+x^{3}m ki te o.
x^{2}-14x+49-\left(6x^{2}mon+x^{3}mon\right)=-\frac{1}{20}
Whakamahia te āhuatanga tohatoha hei whakarea te 6x^{2}mo+x^{3}mo ki te n.
x^{2}-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}
Hei kimi i te tauaro o 6x^{2}mon+x^{3}mon, kimihia te tauaro o ia taurangi.
-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}
Tangohia te x^{2} mai i ngā taha e rua.
49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x
Me tāpiri te 14x ki ngā taha e rua.
-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x-49
Tangohia te 49 mai i ngā taha e rua.
-6x^{2}mon-x^{3}mon=-\frac{981}{20}-x^{2}+14x
Tangohia te 49 i te -\frac{1}{20}, ka -\frac{981}{20}.
\left(-6x^{2}mo-x^{3}mo\right)n=-\frac{981}{20}-x^{2}+14x
Pahekotia ngā kīanga tau katoa e whai ana i te n.
\left(-mox^{3}-6mox^{2}\right)n=-x^{2}+14x-\frac{981}{20}
He hanga arowhānui tō te whārite.
\frac{\left(-mox^{3}-6mox^{2}\right)n}{-mox^{3}-6mox^{2}}=\frac{-x^{2}+14x-\frac{981}{20}}{-mox^{3}-6mox^{2}}
Whakawehea ngā taha e rua ki te -6x^{2}mo-x^{3}mo.
n=\frac{-x^{2}+14x-\frac{981}{20}}{-mox^{3}-6mox^{2}}
Mā te whakawehe ki te -6x^{2}mo-x^{3}mo ka wetekia te whakareanga ki te -6x^{2}mo-x^{3}mo.
n=-\frac{-20x^{2}+280x-981}{20mo\left(x+6\right)x^{2}}
Whakawehe -x^{2}+14x-\frac{981}{20} ki te -6x^{2}mo-x^{3}mo.
\left(x-7\right)^{2}-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Whakareatia te x ki te x, ka x^{2}.
x^{2}-14x+49-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-7\right)^{2}.
x^{2}-14x+49-\left(6x^{2}+x^{3}\right)mon=-\frac{1}{20}
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2} ki te 6+x.
x^{2}-14x+49-\left(6x^{2}m+x^{3}m\right)on=-\frac{1}{20}
Whakamahia te āhuatanga tohatoha hei whakarea te 6x^{2}+x^{3} ki te m.
x^{2}-14x+49-\left(6x^{2}mo+x^{3}mo\right)n=-\frac{1}{20}
Whakamahia te āhuatanga tohatoha hei whakarea te 6x^{2}m+x^{3}m ki te o.
x^{2}-14x+49-\left(6x^{2}mon+x^{3}mon\right)=-\frac{1}{20}
Whakamahia te āhuatanga tohatoha hei whakarea te 6x^{2}mo+x^{3}mo ki te n.
x^{2}-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}
Hei kimi i te tauaro o 6x^{2}mon+x^{3}mon, kimihia te tauaro o ia taurangi.
-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}
Tangohia te x^{2} mai i ngā taha e rua.
49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x
Me tāpiri te 14x ki ngā taha e rua.
-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x-49
Tangohia te 49 mai i ngā taha e rua.
-6x^{2}mon-x^{3}mon=-\frac{981}{20}-x^{2}+14x
Tangohia te 49 i te -\frac{1}{20}, ka -\frac{981}{20}.
\left(-6x^{2}on-x^{3}on\right)m=-\frac{981}{20}-x^{2}+14x
Pahekotia ngā kīanga tau katoa e whai ana i te m.
\left(-nox^{3}-6nox^{2}\right)m=-x^{2}+14x-\frac{981}{20}
He hanga arowhānui tō te whārite.
\frac{\left(-nox^{3}-6nox^{2}\right)m}{-nox^{3}-6nox^{2}}=\frac{-x^{2}+14x-\frac{981}{20}}{-nox^{3}-6nox^{2}}
Whakawehea ngā taha e rua ki te -6x^{2}on-x^{3}on.
m=\frac{-x^{2}+14x-\frac{981}{20}}{-nox^{3}-6nox^{2}}
Mā te whakawehe ki te -6x^{2}on-x^{3}on ka wetekia te whakareanga ki te -6x^{2}on-x^{3}on.
m=\frac{-20x^{2}+280x-981}{-20no\left(x+6\right)x^{2}}
Whakawehe -\frac{981}{20}-x^{2}+14x ki te -6x^{2}on-x^{3}on.
\left(x-7\right)^{2}-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Whakareatia te x ki te x, ka x^{2}.
x^{2}-14x+49-x^{2}\left(6+x\right)mon=-\frac{1}{20}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-7\right)^{2}.
x^{2}-14x+49-\left(6x^{2}+x^{3}\right)mon=-\frac{1}{20}
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2} ki te 6+x.
x^{2}-14x+49-\left(6x^{2}m+x^{3}m\right)on=-\frac{1}{20}
Whakamahia te āhuatanga tohatoha hei whakarea te 6x^{2}+x^{3} ki te m.
x^{2}-14x+49-\left(6x^{2}mo+x^{3}mo\right)n=-\frac{1}{20}
Whakamahia te āhuatanga tohatoha hei whakarea te 6x^{2}m+x^{3}m ki te o.
x^{2}-14x+49-\left(6x^{2}mon+x^{3}mon\right)=-\frac{1}{20}
Whakamahia te āhuatanga tohatoha hei whakarea te 6x^{2}mo+x^{3}mo ki te n.
x^{2}-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}
Hei kimi i te tauaro o 6x^{2}mon+x^{3}mon, kimihia te tauaro o ia taurangi.
-14x+49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}
Tangohia te x^{2} mai i ngā taha e rua.
49-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x
Me tāpiri te 14x ki ngā taha e rua.
-6x^{2}mon-x^{3}mon=-\frac{1}{20}-x^{2}+14x-49
Tangohia te 49 mai i ngā taha e rua.
-6x^{2}mon-x^{3}mon=-\frac{981}{20}-x^{2}+14x
Tangohia te 49 i te -\frac{1}{20}, ka -\frac{981}{20}.
\left(-6x^{2}mo-x^{3}mo\right)n=-\frac{981}{20}-x^{2}+14x
Pahekotia ngā kīanga tau katoa e whai ana i te n.
\left(-mox^{3}-6mox^{2}\right)n=-x^{2}+14x-\frac{981}{20}
He hanga arowhānui tō te whārite.
\frac{\left(-mox^{3}-6mox^{2}\right)n}{-mox^{3}-6mox^{2}}=\frac{-x^{2}+14x-\frac{981}{20}}{-mox^{3}-6mox^{2}}
Whakawehea ngā taha e rua ki te -6x^{2}mo-x^{3}mo.
n=\frac{-x^{2}+14x-\frac{981}{20}}{-mox^{3}-6mox^{2}}
Mā te whakawehe ki te -6x^{2}mo-x^{3}mo ka wetekia te whakareanga ki te -6x^{2}mo-x^{3}mo.
n=\frac{-20x^{2}+280x-981}{-20mo\left(x+6\right)x^{2}}
Whakawehe -\frac{981}{20}-x^{2}+14x ki te -6x^{2}mo-x^{3}mo.