Whakaoti mō x
x=12
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-14x+49-8=17
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-7\right)^{2}.
x^{2}-14x+41=17
Tangohia te 8 i te 49, ka 41.
x^{2}-14x+41-17=0
Tangohia te 17 mai i ngā taha e rua.
x^{2}-14x+24=0
Tangohia te 17 i te 41, ka 24.
a+b=-14 ab=24
Hei whakaoti i te whārite, whakatauwehea te x^{2}-14x+24 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-24 -2,-12 -3,-8 -4,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Tātaihia te tapeke mō ia takirua.
a=-12 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -14.
\left(x-12\right)\left(x-2\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=12 x=2
Hei kimi otinga whārite, me whakaoti te x-12=0 me te x-2=0.
x^{2}-14x+49-8=17
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-7\right)^{2}.
x^{2}-14x+41=17
Tangohia te 8 i te 49, ka 41.
x^{2}-14x+41-17=0
Tangohia te 17 mai i ngā taha e rua.
x^{2}-14x+24=0
Tangohia te 17 i te 41, ka 24.
a+b=-14 ab=1\times 24=24
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+24. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-24 -2,-12 -3,-8 -4,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Tātaihia te tapeke mō ia takirua.
a=-12 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -14.
\left(x^{2}-12x\right)+\left(-2x+24\right)
Tuhia anō te x^{2}-14x+24 hei \left(x^{2}-12x\right)+\left(-2x+24\right).
x\left(x-12\right)-2\left(x-12\right)
Tauwehea te x i te tuatahi me te -2 i te rōpū tuarua.
\left(x-12\right)\left(x-2\right)
Whakatauwehea atu te kīanga pātahi x-12 mā te whakamahi i te āhuatanga tātai tohatoha.
x=12 x=2
Hei kimi otinga whārite, me whakaoti te x-12=0 me te x-2=0.
x^{2}-14x+49-8=17
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-7\right)^{2}.
x^{2}-14x+41=17
Tangohia te 8 i te 49, ka 41.
x^{2}-14x+41-17=0
Tangohia te 17 mai i ngā taha e rua.
x^{2}-14x+24=0
Tangohia te 17 i te 41, ka 24.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 24}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -14 mō b, me 24 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 24}}{2}
Pūrua -14.
x=\frac{-\left(-14\right)±\sqrt{196-96}}{2}
Whakareatia -4 ki te 24.
x=\frac{-\left(-14\right)±\sqrt{100}}{2}
Tāpiri 196 ki te -96.
x=\frac{-\left(-14\right)±10}{2}
Tuhia te pūtakerua o te 100.
x=\frac{14±10}{2}
Ko te tauaro o -14 ko 14.
x=\frac{24}{2}
Nā, me whakaoti te whārite x=\frac{14±10}{2} ina he tāpiri te ±. Tāpiri 14 ki te 10.
x=12
Whakawehe 24 ki te 2.
x=\frac{4}{2}
Nā, me whakaoti te whārite x=\frac{14±10}{2} ina he tango te ±. Tango 10 mai i 14.
x=2
Whakawehe 4 ki te 2.
x=12 x=2
Kua oti te whārite te whakatau.
x^{2}-14x+49-8=17
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-7\right)^{2}.
x^{2}-14x+41=17
Tangohia te 8 i te 49, ka 41.
x^{2}-14x=17-41
Tangohia te 41 mai i ngā taha e rua.
x^{2}-14x=-24
Tangohia te 41 i te 17, ka -24.
x^{2}-14x+\left(-7\right)^{2}=-24+\left(-7\right)^{2}
Whakawehea te -14, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -7. Nā, tāpiria te pūrua o te -7 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-14x+49=-24+49
Pūrua -7.
x^{2}-14x+49=25
Tāpiri -24 ki te 49.
\left(x-7\right)^{2}=25
Tauwehea x^{2}-14x+49. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-7\right)^{2}}=\sqrt{25}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-7=5 x-7=-5
Whakarūnātia.
x=12 x=2
Me tāpiri 7 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}