Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-14x+49=16
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-7\right)^{2}.
x^{2}-14x+49-16=0
Tangohia te 16 mai i ngā taha e rua.
x^{2}-14x+33=0
Tangohia te 16 i te 49, ka 33.
a+b=-14 ab=33
Hei whakaoti i te whārite, whakatauwehea te x^{2}-14x+33 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-33 -3,-11
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 33.
-1-33=-34 -3-11=-14
Tātaihia te tapeke mō ia takirua.
a=-11 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -14.
\left(x-11\right)\left(x-3\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=11 x=3
Hei kimi otinga whārite, me whakaoti te x-11=0 me te x-3=0.
x^{2}-14x+49=16
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-7\right)^{2}.
x^{2}-14x+49-16=0
Tangohia te 16 mai i ngā taha e rua.
x^{2}-14x+33=0
Tangohia te 16 i te 49, ka 33.
a+b=-14 ab=1\times 33=33
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+33. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-33 -3,-11
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 33.
-1-33=-34 -3-11=-14
Tātaihia te tapeke mō ia takirua.
a=-11 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -14.
\left(x^{2}-11x\right)+\left(-3x+33\right)
Tuhia anō te x^{2}-14x+33 hei \left(x^{2}-11x\right)+\left(-3x+33\right).
x\left(x-11\right)-3\left(x-11\right)
Tauwehea te x i te tuatahi me te -3 i te rōpū tuarua.
\left(x-11\right)\left(x-3\right)
Whakatauwehea atu te kīanga pātahi x-11 mā te whakamahi i te āhuatanga tātai tohatoha.
x=11 x=3
Hei kimi otinga whārite, me whakaoti te x-11=0 me te x-3=0.
x^{2}-14x+49=16
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-7\right)^{2}.
x^{2}-14x+49-16=0
Tangohia te 16 mai i ngā taha e rua.
x^{2}-14x+33=0
Tangohia te 16 i te 49, ka 33.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 33}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -14 mō b, me 33 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 33}}{2}
Pūrua -14.
x=\frac{-\left(-14\right)±\sqrt{196-132}}{2}
Whakareatia -4 ki te 33.
x=\frac{-\left(-14\right)±\sqrt{64}}{2}
Tāpiri 196 ki te -132.
x=\frac{-\left(-14\right)±8}{2}
Tuhia te pūtakerua o te 64.
x=\frac{14±8}{2}
Ko te tauaro o -14 ko 14.
x=\frac{22}{2}
Nā, me whakaoti te whārite x=\frac{14±8}{2} ina he tāpiri te ±. Tāpiri 14 ki te 8.
x=11
Whakawehe 22 ki te 2.
x=\frac{6}{2}
Nā, me whakaoti te whārite x=\frac{14±8}{2} ina he tango te ±. Tango 8 mai i 14.
x=3
Whakawehe 6 ki te 2.
x=11 x=3
Kua oti te whārite te whakatau.
\sqrt{\left(x-7\right)^{2}}=\sqrt{16}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-7=4 x-7=-4
Whakarūnātia.
x=11 x=3
Me tāpiri 7 ki ngā taha e rua o te whārite.