Whakaoti mō x
x=80
x=220
Graph
Tohaina
Kua tāruatia ki te papatopenga
150x-0.5x^{2}-7200=1600
Whakamahia te āhuatanga tuaritanga hei whakarea te x-60 ki te 120-0.5x ka whakakotahi i ngā kupu rite.
150x-0.5x^{2}-7200-1600=0
Tangohia te 1600 mai i ngā taha e rua.
150x-0.5x^{2}-8800=0
Tangohia te 1600 i te -7200, ka -8800.
-0.5x^{2}+150x-8800=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-150±\sqrt{150^{2}-4\left(-0.5\right)\left(-8800\right)}}{2\left(-0.5\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -0.5 mō a, 150 mō b, me -8800 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-150±\sqrt{22500-4\left(-0.5\right)\left(-8800\right)}}{2\left(-0.5\right)}
Pūrua 150.
x=\frac{-150±\sqrt{22500+2\left(-8800\right)}}{2\left(-0.5\right)}
Whakareatia -4 ki te -0.5.
x=\frac{-150±\sqrt{22500-17600}}{2\left(-0.5\right)}
Whakareatia 2 ki te -8800.
x=\frac{-150±\sqrt{4900}}{2\left(-0.5\right)}
Tāpiri 22500 ki te -17600.
x=\frac{-150±70}{2\left(-0.5\right)}
Tuhia te pūtakerua o te 4900.
x=\frac{-150±70}{-1}
Whakareatia 2 ki te -0.5.
x=-\frac{80}{-1}
Nā, me whakaoti te whārite x=\frac{-150±70}{-1} ina he tāpiri te ±. Tāpiri -150 ki te 70.
x=80
Whakawehe -80 ki te -1.
x=-\frac{220}{-1}
Nā, me whakaoti te whārite x=\frac{-150±70}{-1} ina he tango te ±. Tango 70 mai i -150.
x=220
Whakawehe -220 ki te -1.
x=80 x=220
Kua oti te whārite te whakatau.
150x-0.5x^{2}-7200=1600
Whakamahia te āhuatanga tuaritanga hei whakarea te x-60 ki te 120-0.5x ka whakakotahi i ngā kupu rite.
150x-0.5x^{2}=1600+7200
Me tāpiri te 7200 ki ngā taha e rua.
150x-0.5x^{2}=8800
Tāpirihia te 1600 ki te 7200, ka 8800.
-0.5x^{2}+150x=8800
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-0.5x^{2}+150x}{-0.5}=\frac{8800}{-0.5}
Me whakarea ngā taha e rua ki te -2.
x^{2}+\frac{150}{-0.5}x=\frac{8800}{-0.5}
Mā te whakawehe ki te -0.5 ka wetekia te whakareanga ki te -0.5.
x^{2}-300x=\frac{8800}{-0.5}
Whakawehe 150 ki te -0.5 mā te whakarea 150 ki te tau huripoki o -0.5.
x^{2}-300x=-17600
Whakawehe 8800 ki te -0.5 mā te whakarea 8800 ki te tau huripoki o -0.5.
x^{2}-300x+\left(-150\right)^{2}=-17600+\left(-150\right)^{2}
Whakawehea te -300, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -150. Nā, tāpiria te pūrua o te -150 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-300x+22500=-17600+22500
Pūrua -150.
x^{2}-300x+22500=4900
Tāpiri -17600 ki te 22500.
\left(x-150\right)^{2}=4900
Tauwehea x^{2}-300x+22500. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-150\right)^{2}}=\sqrt{4900}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-150=70 x-150=-70
Whakarūnātia.
x=220 x=80
Me tāpiri 150 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}