Whakaoti mō x
x=18
x=-6
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-12x+36=144
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-6\right)^{2}.
x^{2}-12x+36-144=0
Tangohia te 144 mai i ngā taha e rua.
x^{2}-12x-108=0
Tangohia te 144 i te 36, ka -108.
a+b=-12 ab=-108
Hei whakaoti i te whārite, whakatauwehea te x^{2}-12x-108 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-108 2,-54 3,-36 4,-27 6,-18 9,-12
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -108.
1-108=-107 2-54=-52 3-36=-33 4-27=-23 6-18=-12 9-12=-3
Tātaihia te tapeke mō ia takirua.
a=-18 b=6
Ko te otinga te takirua ka hoatu i te tapeke -12.
\left(x-18\right)\left(x+6\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=18 x=-6
Hei kimi otinga whārite, me whakaoti te x-18=0 me te x+6=0.
x^{2}-12x+36=144
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-6\right)^{2}.
x^{2}-12x+36-144=0
Tangohia te 144 mai i ngā taha e rua.
x^{2}-12x-108=0
Tangohia te 144 i te 36, ka -108.
a+b=-12 ab=1\left(-108\right)=-108
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-108. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-108 2,-54 3,-36 4,-27 6,-18 9,-12
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -108.
1-108=-107 2-54=-52 3-36=-33 4-27=-23 6-18=-12 9-12=-3
Tātaihia te tapeke mō ia takirua.
a=-18 b=6
Ko te otinga te takirua ka hoatu i te tapeke -12.
\left(x^{2}-18x\right)+\left(6x-108\right)
Tuhia anō te x^{2}-12x-108 hei \left(x^{2}-18x\right)+\left(6x-108\right).
x\left(x-18\right)+6\left(x-18\right)
Tauwehea te x i te tuatahi me te 6 i te rōpū tuarua.
\left(x-18\right)\left(x+6\right)
Whakatauwehea atu te kīanga pātahi x-18 mā te whakamahi i te āhuatanga tātai tohatoha.
x=18 x=-6
Hei kimi otinga whārite, me whakaoti te x-18=0 me te x+6=0.
x^{2}-12x+36=144
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-6\right)^{2}.
x^{2}-12x+36-144=0
Tangohia te 144 mai i ngā taha e rua.
x^{2}-12x-108=0
Tangohia te 144 i te 36, ka -108.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\left(-108\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -12 mō b, me -108 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\left(-108\right)}}{2}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144+432}}{2}
Whakareatia -4 ki te -108.
x=\frac{-\left(-12\right)±\sqrt{576}}{2}
Tāpiri 144 ki te 432.
x=\frac{-\left(-12\right)±24}{2}
Tuhia te pūtakerua o te 576.
x=\frac{12±24}{2}
Ko te tauaro o -12 ko 12.
x=\frac{36}{2}
Nā, me whakaoti te whārite x=\frac{12±24}{2} ina he tāpiri te ±. Tāpiri 12 ki te 24.
x=18
Whakawehe 36 ki te 2.
x=-\frac{12}{2}
Nā, me whakaoti te whārite x=\frac{12±24}{2} ina he tango te ±. Tango 24 mai i 12.
x=-6
Whakawehe -12 ki te 2.
x=18 x=-6
Kua oti te whārite te whakatau.
\sqrt{\left(x-6\right)^{2}}=\sqrt{144}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-6=12 x-6=-12
Whakarūnātia.
x=18 x=-6
Me tāpiri 6 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}