Whakaoti mō x (complex solution)
x=-\sqrt{23}i\approx -0-4.795831523i
x=\sqrt{23}i\approx 4.795831523i
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-25=2\left(x-1\right)\left(x+1\right)
Whakaarohia te \left(x-5\right)\left(x+5\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 5.
x^{2}-25=\left(2x-2\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-1.
x^{2}-25=2x^{2}-2
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x-2 ki te x+1 ka whakakotahi i ngā kupu rite.
x^{2}-25-2x^{2}=-2
Tangohia te 2x^{2} mai i ngā taha e rua.
-x^{2}-25=-2
Pahekotia te x^{2} me -2x^{2}, ka -x^{2}.
-x^{2}=-2+25
Me tāpiri te 25 ki ngā taha e rua.
-x^{2}=23
Tāpirihia te -2 ki te 25, ka 23.
x^{2}=-23
Whakawehea ngā taha e rua ki te -1.
x=\sqrt{23}i x=-\sqrt{23}i
Kua oti te whārite te whakatau.
x^{2}-25=2\left(x-1\right)\left(x+1\right)
Whakaarohia te \left(x-5\right)\left(x+5\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 5.
x^{2}-25=\left(2x-2\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-1.
x^{2}-25=2x^{2}-2
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x-2 ki te x+1 ka whakakotahi i ngā kupu rite.
x^{2}-25-2x^{2}=-2
Tangohia te 2x^{2} mai i ngā taha e rua.
-x^{2}-25=-2
Pahekotia te x^{2} me -2x^{2}, ka -x^{2}.
-x^{2}-25+2=0
Me tāpiri te 2 ki ngā taha e rua.
-x^{2}-23=0
Tāpirihia te -25 ki te 2, ka -23.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\left(-23\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 0 mō b, me -23 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)\left(-23\right)}}{2\left(-1\right)}
Pūrua 0.
x=\frac{0±\sqrt{4\left(-23\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{0±\sqrt{-92}}{2\left(-1\right)}
Whakareatia 4 ki te -23.
x=\frac{0±2\sqrt{23}i}{2\left(-1\right)}
Tuhia te pūtakerua o te -92.
x=\frac{0±2\sqrt{23}i}{-2}
Whakareatia 2 ki te -1.
x=-\sqrt{23}i
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{23}i}{-2} ina he tāpiri te ±.
x=\sqrt{23}i
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{23}i}{-2} ina he tango te ±.
x=-\sqrt{23}i x=\sqrt{23}i
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}