Whakaoti mō x
x=6
x=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-10x+25=1
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-5\right)^{2}.
x^{2}-10x+25-1=0
Tangohia te 1 mai i ngā taha e rua.
x^{2}-10x+24=0
Tangohia te 1 i te 25, ka 24.
a+b=-10 ab=24
Hei whakaoti i te whārite, whakatauwehea te x^{2}-10x+24 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-24 -2,-12 -3,-8 -4,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Tātaihia te tapeke mō ia takirua.
a=-6 b=-4
Ko te otinga te takirua ka hoatu i te tapeke -10.
\left(x-6\right)\left(x-4\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=6 x=4
Hei kimi otinga whārite, me whakaoti te x-6=0 me te x-4=0.
x^{2}-10x+25=1
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-5\right)^{2}.
x^{2}-10x+25-1=0
Tangohia te 1 mai i ngā taha e rua.
x^{2}-10x+24=0
Tangohia te 1 i te 25, ka 24.
a+b=-10 ab=1\times 24=24
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+24. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-24 -2,-12 -3,-8 -4,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Tātaihia te tapeke mō ia takirua.
a=-6 b=-4
Ko te otinga te takirua ka hoatu i te tapeke -10.
\left(x^{2}-6x\right)+\left(-4x+24\right)
Tuhia anō te x^{2}-10x+24 hei \left(x^{2}-6x\right)+\left(-4x+24\right).
x\left(x-6\right)-4\left(x-6\right)
Tauwehea te x i te tuatahi me te -4 i te rōpū tuarua.
\left(x-6\right)\left(x-4\right)
Whakatauwehea atu te kīanga pātahi x-6 mā te whakamahi i te āhuatanga tātai tohatoha.
x=6 x=4
Hei kimi otinga whārite, me whakaoti te x-6=0 me te x-4=0.
x^{2}-10x+25=1
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-5\right)^{2}.
x^{2}-10x+25-1=0
Tangohia te 1 mai i ngā taha e rua.
x^{2}-10x+24=0
Tangohia te 1 i te 25, ka 24.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 24}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -10 mō b, me 24 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 24}}{2}
Pūrua -10.
x=\frac{-\left(-10\right)±\sqrt{100-96}}{2}
Whakareatia -4 ki te 24.
x=\frac{-\left(-10\right)±\sqrt{4}}{2}
Tāpiri 100 ki te -96.
x=\frac{-\left(-10\right)±2}{2}
Tuhia te pūtakerua o te 4.
x=\frac{10±2}{2}
Ko te tauaro o -10 ko 10.
x=\frac{12}{2}
Nā, me whakaoti te whārite x=\frac{10±2}{2} ina he tāpiri te ±. Tāpiri 10 ki te 2.
x=6
Whakawehe 12 ki te 2.
x=\frac{8}{2}
Nā, me whakaoti te whārite x=\frac{10±2}{2} ina he tango te ±. Tango 2 mai i 10.
x=4
Whakawehe 8 ki te 2.
x=6 x=4
Kua oti te whārite te whakatau.
\sqrt{\left(x-5\right)^{2}}=\sqrt{1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-5=1 x-5=-1
Whakarūnātia.
x=6 x=4
Me tāpiri 5 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}