Whakaoti mō x
x=2\sqrt{14}\approx 7.483314774
x=-2\sqrt{14}\approx -7.483314774
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x-4\right)^{2}-\left(4x+5\right)\left(3x-10\right)=17x-110\times 5
Whakareatia te x-4 ki te x-4, ka \left(x-4\right)^{2}.
x^{2}-8x+16-\left(4x+5\right)\left(3x-10\right)=17x-110\times 5
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-4\right)^{2}.
x^{2}-8x+16-\left(12x^{2}-25x-50\right)=17x-110\times 5
Whakamahia te āhuatanga tuaritanga hei whakarea te 4x+5 ki te 3x-10 ka whakakotahi i ngā kupu rite.
x^{2}-8x+16-12x^{2}+25x+50=17x-110\times 5
Hei kimi i te tauaro o 12x^{2}-25x-50, kimihia te tauaro o ia taurangi.
-11x^{2}-8x+16+25x+50=17x-110\times 5
Pahekotia te x^{2} me -12x^{2}, ka -11x^{2}.
-11x^{2}+17x+16+50=17x-110\times 5
Pahekotia te -8x me 25x, ka 17x.
-11x^{2}+17x+66=17x-110\times 5
Tāpirihia te 16 ki te 50, ka 66.
-11x^{2}+17x+66=17x-550
Whakareatia te 110 ki te 5, ka 550.
-11x^{2}+17x+66-17x=-550
Tangohia te 17x mai i ngā taha e rua.
-11x^{2}+66=-550
Pahekotia te 17x me -17x, ka 0.
-11x^{2}=-550-66
Tangohia te 66 mai i ngā taha e rua.
-11x^{2}=-616
Tangohia te 66 i te -550, ka -616.
x^{2}=\frac{-616}{-11}
Whakawehea ngā taha e rua ki te -11.
x^{2}=56
Whakawehea te -616 ki te -11, kia riro ko 56.
x=2\sqrt{14} x=-2\sqrt{14}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\left(x-4\right)^{2}-\left(4x+5\right)\left(3x-10\right)=17x-110\times 5
Whakareatia te x-4 ki te x-4, ka \left(x-4\right)^{2}.
x^{2}-8x+16-\left(4x+5\right)\left(3x-10\right)=17x-110\times 5
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-4\right)^{2}.
x^{2}-8x+16-\left(12x^{2}-25x-50\right)=17x-110\times 5
Whakamahia te āhuatanga tuaritanga hei whakarea te 4x+5 ki te 3x-10 ka whakakotahi i ngā kupu rite.
x^{2}-8x+16-12x^{2}+25x+50=17x-110\times 5
Hei kimi i te tauaro o 12x^{2}-25x-50, kimihia te tauaro o ia taurangi.
-11x^{2}-8x+16+25x+50=17x-110\times 5
Pahekotia te x^{2} me -12x^{2}, ka -11x^{2}.
-11x^{2}+17x+16+50=17x-110\times 5
Pahekotia te -8x me 25x, ka 17x.
-11x^{2}+17x+66=17x-110\times 5
Tāpirihia te 16 ki te 50, ka 66.
-11x^{2}+17x+66=17x-550
Whakareatia te 110 ki te 5, ka 550.
-11x^{2}+17x+66-17x=-550
Tangohia te 17x mai i ngā taha e rua.
-11x^{2}+66=-550
Pahekotia te 17x me -17x, ka 0.
-11x^{2}+66+550=0
Me tāpiri te 550 ki ngā taha e rua.
-11x^{2}+616=0
Tāpirihia te 66 ki te 550, ka 616.
x=\frac{0±\sqrt{0^{2}-4\left(-11\right)\times 616}}{2\left(-11\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -11 mō a, 0 mō b, me 616 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-11\right)\times 616}}{2\left(-11\right)}
Pūrua 0.
x=\frac{0±\sqrt{44\times 616}}{2\left(-11\right)}
Whakareatia -4 ki te -11.
x=\frac{0±\sqrt{27104}}{2\left(-11\right)}
Whakareatia 44 ki te 616.
x=\frac{0±44\sqrt{14}}{2\left(-11\right)}
Tuhia te pūtakerua o te 27104.
x=\frac{0±44\sqrt{14}}{-22}
Whakareatia 2 ki te -11.
x=-2\sqrt{14}
Nā, me whakaoti te whārite x=\frac{0±44\sqrt{14}}{-22} ina he tāpiri te ±.
x=2\sqrt{14}
Nā, me whakaoti te whārite x=\frac{0±44\sqrt{14}}{-22} ina he tango te ±.
x=-2\sqrt{14} x=2\sqrt{14}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}