Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x-4\right)^{2}-\left(4x+5\right)\left(3x-10\right)=17x-110\times 5
Whakareatia te x-4 ki te x-4, ka \left(x-4\right)^{2}.
x^{2}-8x+16-\left(4x+5\right)\left(3x-10\right)=17x-110\times 5
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-4\right)^{2}.
x^{2}-8x+16-\left(12x^{2}-25x-50\right)=17x-110\times 5
Whakamahia te āhuatanga tuaritanga hei whakarea te 4x+5 ki te 3x-10 ka whakakotahi i ngā kupu rite.
x^{2}-8x+16-12x^{2}+25x+50=17x-110\times 5
Hei kimi i te tauaro o 12x^{2}-25x-50, kimihia te tauaro o ia taurangi.
-11x^{2}-8x+16+25x+50=17x-110\times 5
Pahekotia te x^{2} me -12x^{2}, ka -11x^{2}.
-11x^{2}+17x+16+50=17x-110\times 5
Pahekotia te -8x me 25x, ka 17x.
-11x^{2}+17x+66=17x-110\times 5
Tāpirihia te 16 ki te 50, ka 66.
-11x^{2}+17x+66=17x-550
Whakareatia te 110 ki te 5, ka 550.
-11x^{2}+17x+66-17x=-550
Tangohia te 17x mai i ngā taha e rua.
-11x^{2}+66=-550
Pahekotia te 17x me -17x, ka 0.
-11x^{2}=-550-66
Tangohia te 66 mai i ngā taha e rua.
-11x^{2}=-616
Tangohia te 66 i te -550, ka -616.
x^{2}=\frac{-616}{-11}
Whakawehea ngā taha e rua ki te -11.
x^{2}=56
Whakawehea te -616 ki te -11, kia riro ko 56.
x=2\sqrt{14} x=-2\sqrt{14}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\left(x-4\right)^{2}-\left(4x+5\right)\left(3x-10\right)=17x-110\times 5
Whakareatia te x-4 ki te x-4, ka \left(x-4\right)^{2}.
x^{2}-8x+16-\left(4x+5\right)\left(3x-10\right)=17x-110\times 5
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-4\right)^{2}.
x^{2}-8x+16-\left(12x^{2}-25x-50\right)=17x-110\times 5
Whakamahia te āhuatanga tuaritanga hei whakarea te 4x+5 ki te 3x-10 ka whakakotahi i ngā kupu rite.
x^{2}-8x+16-12x^{2}+25x+50=17x-110\times 5
Hei kimi i te tauaro o 12x^{2}-25x-50, kimihia te tauaro o ia taurangi.
-11x^{2}-8x+16+25x+50=17x-110\times 5
Pahekotia te x^{2} me -12x^{2}, ka -11x^{2}.
-11x^{2}+17x+16+50=17x-110\times 5
Pahekotia te -8x me 25x, ka 17x.
-11x^{2}+17x+66=17x-110\times 5
Tāpirihia te 16 ki te 50, ka 66.
-11x^{2}+17x+66=17x-550
Whakareatia te 110 ki te 5, ka 550.
-11x^{2}+17x+66-17x=-550
Tangohia te 17x mai i ngā taha e rua.
-11x^{2}+66=-550
Pahekotia te 17x me -17x, ka 0.
-11x^{2}+66+550=0
Me tāpiri te 550 ki ngā taha e rua.
-11x^{2}+616=0
Tāpirihia te 66 ki te 550, ka 616.
x=\frac{0±\sqrt{0^{2}-4\left(-11\right)\times 616}}{2\left(-11\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -11 mō a, 0 mō b, me 616 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-11\right)\times 616}}{2\left(-11\right)}
Pūrua 0.
x=\frac{0±\sqrt{44\times 616}}{2\left(-11\right)}
Whakareatia -4 ki te -11.
x=\frac{0±\sqrt{27104}}{2\left(-11\right)}
Whakareatia 44 ki te 616.
x=\frac{0±44\sqrt{14}}{2\left(-11\right)}
Tuhia te pūtakerua o te 27104.
x=\frac{0±44\sqrt{14}}{-22}
Whakareatia 2 ki te -11.
x=-2\sqrt{14}
Nā, me whakaoti te whārite x=\frac{0±44\sqrt{14}}{-22} ina he tāpiri te ±.
x=2\sqrt{14}
Nā, me whakaoti te whārite x=\frac{0±44\sqrt{14}}{-22} ina he tango te ±.
x=-2\sqrt{14} x=2\sqrt{14}
Kua oti te whārite te whakatau.