Whakaoti mō x
x = -\frac{18}{5} = -3\frac{3}{5} = -3.6
x=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}-6x-24+\left(x-4\right)\left(12x+48\right)=0
Whakamahia te āhuatanga tuaritanga hei whakarea te x-4 ki te 3x+6 ka whakakotahi i ngā kupu rite.
3x^{2}-6x-24+12x^{2}-192=0
Whakamahia te āhuatanga tuaritanga hei whakarea te x-4 ki te 12x+48 ka whakakotahi i ngā kupu rite.
15x^{2}-6x-24-192=0
Pahekotia te 3x^{2} me 12x^{2}, ka 15x^{2}.
15x^{2}-6x-216=0
Tangohia te 192 i te -24, ka -216.
5x^{2}-2x-72=0
Whakawehea ngā taha e rua ki te 3.
a+b=-2 ab=5\left(-72\right)=-360
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 5x^{2}+ax+bx-72. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-360 2,-180 3,-120 4,-90 5,-72 6,-60 8,-45 9,-40 10,-36 12,-30 15,-24 18,-20
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -360.
1-360=-359 2-180=-178 3-120=-117 4-90=-86 5-72=-67 6-60=-54 8-45=-37 9-40=-31 10-36=-26 12-30=-18 15-24=-9 18-20=-2
Tātaihia te tapeke mō ia takirua.
a=-20 b=18
Ko te otinga te takirua ka hoatu i te tapeke -2.
\left(5x^{2}-20x\right)+\left(18x-72\right)
Tuhia anō te 5x^{2}-2x-72 hei \left(5x^{2}-20x\right)+\left(18x-72\right).
5x\left(x-4\right)+18\left(x-4\right)
Tauwehea te 5x i te tuatahi me te 18 i te rōpū tuarua.
\left(x-4\right)\left(5x+18\right)
Whakatauwehea atu te kīanga pātahi x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
x=4 x=-\frac{18}{5}
Hei kimi otinga whārite, me whakaoti te x-4=0 me te 5x+18=0.
3x^{2}-6x-24+\left(x-4\right)\left(12x+48\right)=0
Whakamahia te āhuatanga tuaritanga hei whakarea te x-4 ki te 3x+6 ka whakakotahi i ngā kupu rite.
3x^{2}-6x-24+12x^{2}-192=0
Whakamahia te āhuatanga tuaritanga hei whakarea te x-4 ki te 12x+48 ka whakakotahi i ngā kupu rite.
15x^{2}-6x-24-192=0
Pahekotia te 3x^{2} me 12x^{2}, ka 15x^{2}.
15x^{2}-6x-216=0
Tangohia te 192 i te -24, ka -216.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 15\left(-216\right)}}{2\times 15}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 15 mō a, -6 mō b, me -216 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 15\left(-216\right)}}{2\times 15}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36-60\left(-216\right)}}{2\times 15}
Whakareatia -4 ki te 15.
x=\frac{-\left(-6\right)±\sqrt{36+12960}}{2\times 15}
Whakareatia -60 ki te -216.
x=\frac{-\left(-6\right)±\sqrt{12996}}{2\times 15}
Tāpiri 36 ki te 12960.
x=\frac{-\left(-6\right)±114}{2\times 15}
Tuhia te pūtakerua o te 12996.
x=\frac{6±114}{2\times 15}
Ko te tauaro o -6 ko 6.
x=\frac{6±114}{30}
Whakareatia 2 ki te 15.
x=\frac{120}{30}
Nā, me whakaoti te whārite x=\frac{6±114}{30} ina he tāpiri te ±. Tāpiri 6 ki te 114.
x=4
Whakawehe 120 ki te 30.
x=-\frac{108}{30}
Nā, me whakaoti te whārite x=\frac{6±114}{30} ina he tango te ±. Tango 114 mai i 6.
x=-\frac{18}{5}
Whakahekea te hautanga \frac{-108}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=4 x=-\frac{18}{5}
Kua oti te whārite te whakatau.
3x^{2}-6x-24+\left(x-4\right)\left(12x+48\right)=0
Whakamahia te āhuatanga tuaritanga hei whakarea te x-4 ki te 3x+6 ka whakakotahi i ngā kupu rite.
3x^{2}-6x-24+12x^{2}-192=0
Whakamahia te āhuatanga tuaritanga hei whakarea te x-4 ki te 12x+48 ka whakakotahi i ngā kupu rite.
15x^{2}-6x-24-192=0
Pahekotia te 3x^{2} me 12x^{2}, ka 15x^{2}.
15x^{2}-6x-216=0
Tangohia te 192 i te -24, ka -216.
15x^{2}-6x=216
Me tāpiri te 216 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{15x^{2}-6x}{15}=\frac{216}{15}
Whakawehea ngā taha e rua ki te 15.
x^{2}+\left(-\frac{6}{15}\right)x=\frac{216}{15}
Mā te whakawehe ki te 15 ka wetekia te whakareanga ki te 15.
x^{2}-\frac{2}{5}x=\frac{216}{15}
Whakahekea te hautanga \frac{-6}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}-\frac{2}{5}x=\frac{72}{5}
Whakahekea te hautanga \frac{216}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}-\frac{2}{5}x+\left(-\frac{1}{5}\right)^{2}=\frac{72}{5}+\left(-\frac{1}{5}\right)^{2}
Whakawehea te -\frac{2}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{5}. Nā, tāpiria te pūrua o te -\frac{1}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{2}{5}x+\frac{1}{25}=\frac{72}{5}+\frac{1}{25}
Pūruatia -\frac{1}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{2}{5}x+\frac{1}{25}=\frac{361}{25}
Tāpiri \frac{72}{5} ki te \frac{1}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{5}\right)^{2}=\frac{361}{25}
Tauwehea x^{2}-\frac{2}{5}x+\frac{1}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{5}\right)^{2}}=\sqrt{\frac{361}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{5}=\frac{19}{5} x-\frac{1}{5}=-\frac{19}{5}
Whakarūnātia.
x=4 x=-\frac{18}{5}
Me tāpiri \frac{1}{5} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}