Whakaoti mō x
x=\sqrt{13}+1\approx 4.605551275
x=1-\sqrt{13}\approx -2.605551275
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-x-12=x
Whakamahia te āhuatanga tuaritanga hei whakarea te x-4 ki te x+3 ka whakakotahi i ngā kupu rite.
x^{2}-x-12-x=0
Tangohia te x mai i ngā taha e rua.
x^{2}-2x-12=0
Pahekotia te -x me -x, ka -2x.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-12\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -2 mō b, me -12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-12\right)}}{2}
Pūrua -2.
x=\frac{-\left(-2\right)±\sqrt{4+48}}{2}
Whakareatia -4 ki te -12.
x=\frac{-\left(-2\right)±\sqrt{52}}{2}
Tāpiri 4 ki te 48.
x=\frac{-\left(-2\right)±2\sqrt{13}}{2}
Tuhia te pūtakerua o te 52.
x=\frac{2±2\sqrt{13}}{2}
Ko te tauaro o -2 ko 2.
x=\frac{2\sqrt{13}+2}{2}
Nā, me whakaoti te whārite x=\frac{2±2\sqrt{13}}{2} ina he tāpiri te ±. Tāpiri 2 ki te 2\sqrt{13}.
x=\sqrt{13}+1
Whakawehe 2+2\sqrt{13} ki te 2.
x=\frac{2-2\sqrt{13}}{2}
Nā, me whakaoti te whārite x=\frac{2±2\sqrt{13}}{2} ina he tango te ±. Tango 2\sqrt{13} mai i 2.
x=1-\sqrt{13}
Whakawehe 2-2\sqrt{13} ki te 2.
x=\sqrt{13}+1 x=1-\sqrt{13}
Kua oti te whārite te whakatau.
x^{2}-x-12=x
Whakamahia te āhuatanga tuaritanga hei whakarea te x-4 ki te x+3 ka whakakotahi i ngā kupu rite.
x^{2}-x-12-x=0
Tangohia te x mai i ngā taha e rua.
x^{2}-2x-12=0
Pahekotia te -x me -x, ka -2x.
x^{2}-2x=12
Me tāpiri te 12 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}-2x+1=12+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=13
Tāpiri 12 ki te 1.
\left(x-1\right)^{2}=13
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{13}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=\sqrt{13} x-1=-\sqrt{13}
Whakarūnātia.
x=\sqrt{13}+1 x=1-\sqrt{13}
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}