Whakaoti mō x
x=-3
x=4
x=1
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
( x - 4 ) ^ { 2 } \cdot ( x + 3 ) ^ { 3 } \cdot ( x - 1 ) = 0
Tohaina
Kua tāruatia ki te papatopenga
\left(x^{2}-8x+16\right)\left(x+3\right)^{3}\left(x-1\right)=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-4\right)^{2}.
\left(x^{2}-8x+16\right)\left(x^{3}+9x^{2}+27x+27\right)\left(x-1\right)=0
Whakamahia te ture huarua \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} hei whakaroha \left(x+3\right)^{3}.
\left(x^{5}+x^{4}-29x^{3}-45x^{2}+216x+432\right)\left(x-1\right)=0
Whakamahia te āhuatanga tuaritanga hei whakarea te x^{2}-8x+16 ki te x^{3}+9x^{2}+27x+27 ka whakakotahi i ngā kupu rite.
x^{6}-30x^{4}-16x^{3}+261x^{2}+216x-432=0
Whakamahia te āhuatanga tuaritanga hei whakarea te x^{5}+x^{4}-29x^{3}-45x^{2}+216x+432 ki te x-1 ka whakakotahi i ngā kupu rite.
±432,±216,±144,±108,±72,±54,±48,±36,±27,±24,±18,±16,±12,±9,±8,±6,±4,±3,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -432, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=1
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{5}+x^{4}-29x^{3}-45x^{2}+216x+432=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{6}-30x^{4}-16x^{3}+261x^{2}+216x-432 ki te x-1, kia riro ko x^{5}+x^{4}-29x^{3}-45x^{2}+216x+432. Whakaotihia te whārite ina ōrite te hua ki te 0.
±432,±216,±144,±108,±72,±54,±48,±36,±27,±24,±18,±16,±12,±9,±8,±6,±4,±3,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 432, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=-3
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{4}-2x^{3}-23x^{2}+24x+144=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{5}+x^{4}-29x^{3}-45x^{2}+216x+432 ki te x+3, kia riro ko x^{4}-2x^{3}-23x^{2}+24x+144. Whakaotihia te whārite ina ōrite te hua ki te 0.
±144,±72,±48,±36,±24,±18,±16,±12,±9,±8,±6,±4,±3,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 144, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=-3
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{3}-5x^{2}-8x+48=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{4}-2x^{3}-23x^{2}+24x+144 ki te x+3, kia riro ko x^{3}-5x^{2}-8x+48. Whakaotihia te whārite ina ōrite te hua ki te 0.
±48,±24,±16,±12,±8,±6,±4,±3,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 48, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=-3
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{2}-8x+16=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{3}-5x^{2}-8x+48 ki te x+3, kia riro ko x^{2}-8x+16. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 1\times 16}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -8 mō te b, me te 16 mō te c i te ture pūrua.
x=\frac{8±0}{2}
Mahia ngā tātaitai.
x=4
He ōrite ngā whakatau.
x=1 x=-3 x=4
Rārangitia ngā otinga katoa i kitea.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}