Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-5x+6=2
Whakamahia te āhuatanga tuaritanga hei whakarea te x-3 ki te x-2 ka whakakotahi i ngā kupu rite.
x^{2}-5x+6-2=0
Tangohia te 2 mai i ngā taha e rua.
x^{2}-5x+4=0
Tangohia te 2 i te 6, ka 4.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 4}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -5 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 4}}{2}
Pūrua -5.
x=\frac{-\left(-5\right)±\sqrt{25-16}}{2}
Whakareatia -4 ki te 4.
x=\frac{-\left(-5\right)±\sqrt{9}}{2}
Tāpiri 25 ki te -16.
x=\frac{-\left(-5\right)±3}{2}
Tuhia te pūtakerua o te 9.
x=\frac{5±3}{2}
Ko te tauaro o -5 ko 5.
x=\frac{8}{2}
Nā, me whakaoti te whārite x=\frac{5±3}{2} ina he tāpiri te ±. Tāpiri 5 ki te 3.
x=4
Whakawehe 8 ki te 2.
x=\frac{2}{2}
Nā, me whakaoti te whārite x=\frac{5±3}{2} ina he tango te ±. Tango 3 mai i 5.
x=1
Whakawehe 2 ki te 2.
x=4 x=1
Kua oti te whārite te whakatau.
x^{2}-5x+6=2
Whakamahia te āhuatanga tuaritanga hei whakarea te x-3 ki te x-2 ka whakakotahi i ngā kupu rite.
x^{2}-5x=2-6
Tangohia te 6 mai i ngā taha e rua.
x^{2}-5x=-4
Tangohia te 6 i te 2, ka -4.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-4+\left(-\frac{5}{2}\right)^{2}
Whakawehea te -5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{2}. Nā, tāpiria te pūrua o te -\frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-5x+\frac{25}{4}=-4+\frac{25}{4}
Pūruatia -\frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-5x+\frac{25}{4}=\frac{9}{4}
Tāpiri -4 ki te \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{9}{4}
Tauwehea x^{2}-5x+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{2}=\frac{3}{2} x-\frac{5}{2}=-\frac{3}{2}
Whakarūnātia.
x=4 x=1
Me tāpiri \frac{5}{2} ki ngā taha e rua o te whārite.