Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-9=3x\left(x-1\right)+3x-9
Whakaarohia te \left(x-3\right)\left(x+3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 3.
x^{2}-9=3x^{2}-3x+3x-9
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te x-1.
x^{2}-9=3x^{2}-9
Pahekotia te -3x me 3x, ka 0.
x^{2}-9-3x^{2}=-9
Tangohia te 3x^{2} mai i ngā taha e rua.
-2x^{2}-9=-9
Pahekotia te x^{2} me -3x^{2}, ka -2x^{2}.
-2x^{2}=-9+9
Me tāpiri te 9 ki ngā taha e rua.
-2x^{2}=0
Tāpirihia te -9 ki te 9, ka 0.
x^{2}=0
Whakawehea ngā taha e rua ki te -2. Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
x=0 x=0
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x=0
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
x^{2}-9=3x\left(x-1\right)+3x-9
Whakaarohia te \left(x-3\right)\left(x+3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 3.
x^{2}-9=3x^{2}-3x+3x-9
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te x-1.
x^{2}-9=3x^{2}-9
Pahekotia te -3x me 3x, ka 0.
x^{2}-9-3x^{2}=-9
Tangohia te 3x^{2} mai i ngā taha e rua.
-2x^{2}-9=-9
Pahekotia te x^{2} me -3x^{2}, ka -2x^{2}.
-2x^{2}-9+9=0
Me tāpiri te 9 ki ngā taha e rua.
-2x^{2}=0
Tāpirihia te -9 ki te 9, ka 0.
x^{2}=0
Whakawehea ngā taha e rua ki te -2. Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
x=\frac{0±\sqrt{0^{2}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±0}{2}
Tuhia te pūtakerua o te 0^{2}.
x=0
Whakawehe 0 ki te 2.