Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{3}-9x^{2}+27x-27=125
Whakamahia te ture huarua \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} hei whakaroha \left(x-3\right)^{3}.
x^{3}-9x^{2}+27x-27-125=0
Tangohia te 125 mai i ngā taha e rua.
x^{3}-9x^{2}+27x-152=0
Tangohia te 125 i te -27, ka -152.
±152,±76,±38,±19,±8,±4,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -152, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=8
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{2}-x+19=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{3}-9x^{2}+27x-152 ki te x-8, kia riro ko x^{2}-x+19. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\times 19}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -1 mō te b, me te 19 mō te c i te ture pūrua.
x=\frac{1±\sqrt{-75}}{2}
Mahia ngā tātaitai.
x=\frac{-5i\sqrt{3}+1}{2} x=\frac{1+5i\sqrt{3}}{2}
Whakaotia te whārite x^{2}-x+19=0 ina he tōrunga te ±, ina he tōraro te ±.
x=8 x=\frac{-5i\sqrt{3}+1}{2} x=\frac{1+5i\sqrt{3}}{2}
Rārangitia ngā otinga katoa i kitea.
x^{3}-9x^{2}+27x-27=125
Whakamahia te ture huarua \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} hei whakaroha \left(x-3\right)^{3}.
x^{3}-9x^{2}+27x-27-125=0
Tangohia te 125 mai i ngā taha e rua.
x^{3}-9x^{2}+27x-152=0
Tangohia te 125 i te -27, ka -152.
±152,±76,±38,±19,±8,±4,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -152, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=8
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{2}-x+19=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{3}-9x^{2}+27x-152 ki te x-8, kia riro ko x^{2}-x+19. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\times 19}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -1 mō te b, me te 19 mō te c i te ture pūrua.
x=\frac{1±\sqrt{-75}}{2}
Mahia ngā tātaitai.
x\in \emptyset
Tā te mea e kore te pūrua o tētahi tau tōraro e tautohutia ki te āpure tūturu, kāhore he rongoā.
x=8
Rārangitia ngā otinga katoa i kitea.