Whakaoti mō x
x\leq 11
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-6x+9\geq \left(x-7\right)\left(x+5\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-3\right)^{2}.
x^{2}-6x+9\geq x^{2}-2x-35
Whakamahia te āhuatanga tuaritanga hei whakarea te x-7 ki te x+5 ka whakakotahi i ngā kupu rite.
x^{2}-6x+9-x^{2}\geq -2x-35
Tangohia te x^{2} mai i ngā taha e rua.
-6x+9\geq -2x-35
Pahekotia te x^{2} me -x^{2}, ka 0.
-6x+9+2x\geq -35
Me tāpiri te 2x ki ngā taha e rua.
-4x+9\geq -35
Pahekotia te -6x me 2x, ka -4x.
-4x\geq -35-9
Tangohia te 9 mai i ngā taha e rua.
-4x\geq -44
Tangohia te 9 i te -35, ka -44.
x\leq \frac{-44}{-4}
Whakawehea ngā taha e rua ki te -4. I te mea he tōraro a -4, ka huri te ahunga koreōrite.
x\leq 11
Whakawehea te -44 ki te -4, kia riro ko 11.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}