Whakaoti mō x
x=6
x=0
Graph
Pātaitai
Polynomial
( x - 3 ) ^ { 2 } = 9
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-6x+9=9
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-3\right)^{2}.
x^{2}-6x+9-9=0
Tangohia te 9 mai i ngā taha e rua.
x^{2}-6x=0
Tangohia te 9 i te 9, ka 0.
x\left(x-6\right)=0
Tauwehea te x.
x=0 x=6
Hei kimi otinga whārite, me whakaoti te x=0 me te x-6=0.
x^{2}-6x+9=9
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-3\right)^{2}.
x^{2}-6x+9-9=0
Tangohia te 9 mai i ngā taha e rua.
x^{2}-6x=0
Tangohia te 9 i te 9, ka 0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -6 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±6}{2}
Tuhia te pūtakerua o te \left(-6\right)^{2}.
x=\frac{6±6}{2}
Ko te tauaro o -6 ko 6.
x=\frac{12}{2}
Nā, me whakaoti te whārite x=\frac{6±6}{2} ina he tāpiri te ±. Tāpiri 6 ki te 6.
x=6
Whakawehe 12 ki te 2.
x=\frac{0}{2}
Nā, me whakaoti te whārite x=\frac{6±6}{2} ina he tango te ±. Tango 6 mai i 6.
x=0
Whakawehe 0 ki te 2.
x=6 x=0
Kua oti te whārite te whakatau.
\sqrt{\left(x-3\right)^{2}}=\sqrt{9}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-3=3 x-3=-3
Whakarūnātia.
x=6 x=0
Me tāpiri 3 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}