Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-6x+9=\left(2x+1\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-3\right)^{2}.
x^{2}-6x+9=4x^{2}+4x+1
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+1\right)^{2}.
x^{2}-6x+9-4x^{2}=4x+1
Tangohia te 4x^{2} mai i ngā taha e rua.
-3x^{2}-6x+9=4x+1
Pahekotia te x^{2} me -4x^{2}, ka -3x^{2}.
-3x^{2}-6x+9-4x=1
Tangohia te 4x mai i ngā taha e rua.
-3x^{2}-10x+9=1
Pahekotia te -6x me -4x, ka -10x.
-3x^{2}-10x+9-1=0
Tangohia te 1 mai i ngā taha e rua.
-3x^{2}-10x+8=0
Tangohia te 1 i te 9, ka 8.
a+b=-10 ab=-3\times 8=-24
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -3x^{2}+ax+bx+8. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-24 2,-12 3,-8 4,-6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -24.
1-24=-23 2-12=-10 3-8=-5 4-6=-2
Tātaihia te tapeke mō ia takirua.
a=2 b=-12
Ko te otinga te takirua ka hoatu i te tapeke -10.
\left(-3x^{2}+2x\right)+\left(-12x+8\right)
Tuhia anō te -3x^{2}-10x+8 hei \left(-3x^{2}+2x\right)+\left(-12x+8\right).
-x\left(3x-2\right)-4\left(3x-2\right)
Tauwehea te -x i te tuatahi me te -4 i te rōpū tuarua.
\left(3x-2\right)\left(-x-4\right)
Whakatauwehea atu te kīanga pātahi 3x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{2}{3} x=-4
Hei kimi otinga whārite, me whakaoti te 3x-2=0 me te -x-4=0.
x^{2}-6x+9=\left(2x+1\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-3\right)^{2}.
x^{2}-6x+9=4x^{2}+4x+1
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+1\right)^{2}.
x^{2}-6x+9-4x^{2}=4x+1
Tangohia te 4x^{2} mai i ngā taha e rua.
-3x^{2}-6x+9=4x+1
Pahekotia te x^{2} me -4x^{2}, ka -3x^{2}.
-3x^{2}-6x+9-4x=1
Tangohia te 4x mai i ngā taha e rua.
-3x^{2}-10x+9=1
Pahekotia te -6x me -4x, ka -10x.
-3x^{2}-10x+9-1=0
Tangohia te 1 mai i ngā taha e rua.
-3x^{2}-10x+8=0
Tangohia te 1 i te 9, ka 8.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-3\right)\times 8}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, -10 mō b, me 8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-3\right)\times 8}}{2\left(-3\right)}
Pūrua -10.
x=\frac{-\left(-10\right)±\sqrt{100+12\times 8}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-\left(-10\right)±\sqrt{100+96}}{2\left(-3\right)}
Whakareatia 12 ki te 8.
x=\frac{-\left(-10\right)±\sqrt{196}}{2\left(-3\right)}
Tāpiri 100 ki te 96.
x=\frac{-\left(-10\right)±14}{2\left(-3\right)}
Tuhia te pūtakerua o te 196.
x=\frac{10±14}{2\left(-3\right)}
Ko te tauaro o -10 ko 10.
x=\frac{10±14}{-6}
Whakareatia 2 ki te -3.
x=\frac{24}{-6}
Nā, me whakaoti te whārite x=\frac{10±14}{-6} ina he tāpiri te ±. Tāpiri 10 ki te 14.
x=-4
Whakawehe 24 ki te -6.
x=-\frac{4}{-6}
Nā, me whakaoti te whārite x=\frac{10±14}{-6} ina he tango te ±. Tango 14 mai i 10.
x=\frac{2}{3}
Whakahekea te hautanga \frac{-4}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-4 x=\frac{2}{3}
Kua oti te whārite te whakatau.
x^{2}-6x+9=\left(2x+1\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-3\right)^{2}.
x^{2}-6x+9=4x^{2}+4x+1
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+1\right)^{2}.
x^{2}-6x+9-4x^{2}=4x+1
Tangohia te 4x^{2} mai i ngā taha e rua.
-3x^{2}-6x+9=4x+1
Pahekotia te x^{2} me -4x^{2}, ka -3x^{2}.
-3x^{2}-6x+9-4x=1
Tangohia te 4x mai i ngā taha e rua.
-3x^{2}-10x+9=1
Pahekotia te -6x me -4x, ka -10x.
-3x^{2}-10x=1-9
Tangohia te 9 mai i ngā taha e rua.
-3x^{2}-10x=-8
Tangohia te 9 i te 1, ka -8.
\frac{-3x^{2}-10x}{-3}=-\frac{8}{-3}
Whakawehea ngā taha e rua ki te -3.
x^{2}+\left(-\frac{10}{-3}\right)x=-\frac{8}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
x^{2}+\frac{10}{3}x=-\frac{8}{-3}
Whakawehe -10 ki te -3.
x^{2}+\frac{10}{3}x=\frac{8}{3}
Whakawehe -8 ki te -3.
x^{2}+\frac{10}{3}x+\left(\frac{5}{3}\right)^{2}=\frac{8}{3}+\left(\frac{5}{3}\right)^{2}
Whakawehea te \frac{10}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{3}. Nā, tāpiria te pūrua o te \frac{5}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{10}{3}x+\frac{25}{9}=\frac{8}{3}+\frac{25}{9}
Pūruatia \frac{5}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{10}{3}x+\frac{25}{9}=\frac{49}{9}
Tāpiri \frac{8}{3} ki te \frac{25}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{5}{3}\right)^{2}=\frac{49}{9}
Tauwehea x^{2}+\frac{10}{3}x+\frac{25}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{3}\right)^{2}}=\sqrt{\frac{49}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{3}=\frac{7}{3} x+\frac{5}{3}=-\frac{7}{3}
Whakarūnātia.
x=\frac{2}{3} x=-4
Me tango \frac{5}{3} mai i ngā taha e rua o te whārite.