Whakaoti mō x
x=4
x = \frac{9}{4} = 2\frac{1}{4} = 2.25
Graph
Tohaina
Kua tāruatia ki te papatopenga
4\left(x-3\right)^{2}=x
Whakareatia ngā taha e rua o te whārite ki te 4.
4\left(x^{2}-6x+9\right)=x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-3\right)^{2}.
4x^{2}-24x+36=x
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x^{2}-6x+9.
4x^{2}-24x+36-x=0
Tangohia te x mai i ngā taha e rua.
4x^{2}-25x+36=0
Pahekotia te -24x me -x, ka -25x.
a+b=-25 ab=4\times 36=144
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 4x^{2}+ax+bx+36. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-144 -2,-72 -3,-48 -4,-36 -6,-24 -8,-18 -9,-16 -12,-12
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 144.
-1-144=-145 -2-72=-74 -3-48=-51 -4-36=-40 -6-24=-30 -8-18=-26 -9-16=-25 -12-12=-24
Tātaihia te tapeke mō ia takirua.
a=-16 b=-9
Ko te otinga te takirua ka hoatu i te tapeke -25.
\left(4x^{2}-16x\right)+\left(-9x+36\right)
Tuhia anō te 4x^{2}-25x+36 hei \left(4x^{2}-16x\right)+\left(-9x+36\right).
4x\left(x-4\right)-9\left(x-4\right)
Tauwehea te 4x i te tuatahi me te -9 i te rōpū tuarua.
\left(x-4\right)\left(4x-9\right)
Whakatauwehea atu te kīanga pātahi x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
x=4 x=\frac{9}{4}
Hei kimi otinga whārite, me whakaoti te x-4=0 me te 4x-9=0.
4\left(x-3\right)^{2}=x
Whakareatia ngā taha e rua o te whārite ki te 4.
4\left(x^{2}-6x+9\right)=x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-3\right)^{2}.
4x^{2}-24x+36=x
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x^{2}-6x+9.
4x^{2}-24x+36-x=0
Tangohia te x mai i ngā taha e rua.
4x^{2}-25x+36=0
Pahekotia te -24x me -x, ka -25x.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times 4\times 36}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -25 mō b, me 36 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-25\right)±\sqrt{625-4\times 4\times 36}}{2\times 4}
Pūrua -25.
x=\frac{-\left(-25\right)±\sqrt{625-16\times 36}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-\left(-25\right)±\sqrt{625-576}}{2\times 4}
Whakareatia -16 ki te 36.
x=\frac{-\left(-25\right)±\sqrt{49}}{2\times 4}
Tāpiri 625 ki te -576.
x=\frac{-\left(-25\right)±7}{2\times 4}
Tuhia te pūtakerua o te 49.
x=\frac{25±7}{2\times 4}
Ko te tauaro o -25 ko 25.
x=\frac{25±7}{8}
Whakareatia 2 ki te 4.
x=\frac{32}{8}
Nā, me whakaoti te whārite x=\frac{25±7}{8} ina he tāpiri te ±. Tāpiri 25 ki te 7.
x=4
Whakawehe 32 ki te 8.
x=\frac{18}{8}
Nā, me whakaoti te whārite x=\frac{25±7}{8} ina he tango te ±. Tango 7 mai i 25.
x=\frac{9}{4}
Whakahekea te hautanga \frac{18}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=4 x=\frac{9}{4}
Kua oti te whārite te whakatau.
4\left(x-3\right)^{2}=x
Whakareatia ngā taha e rua o te whārite ki te 4.
4\left(x^{2}-6x+9\right)=x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-3\right)^{2}.
4x^{2}-24x+36=x
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x^{2}-6x+9.
4x^{2}-24x+36-x=0
Tangohia te x mai i ngā taha e rua.
4x^{2}-25x+36=0
Pahekotia te -24x me -x, ka -25x.
4x^{2}-25x=-36
Tangohia te 36 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{4x^{2}-25x}{4}=-\frac{36}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}-\frac{25}{4}x=-\frac{36}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}-\frac{25}{4}x=-9
Whakawehe -36 ki te 4.
x^{2}-\frac{25}{4}x+\left(-\frac{25}{8}\right)^{2}=-9+\left(-\frac{25}{8}\right)^{2}
Whakawehea te -\frac{25}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{25}{8}. Nā, tāpiria te pūrua o te -\frac{25}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{25}{4}x+\frac{625}{64}=-9+\frac{625}{64}
Pūruatia -\frac{25}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{25}{4}x+\frac{625}{64}=\frac{49}{64}
Tāpiri -9 ki te \frac{625}{64}.
\left(x-\frac{25}{8}\right)^{2}=\frac{49}{64}
Tauwehea x^{2}-\frac{25}{4}x+\frac{625}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{25}{8}\right)^{2}}=\sqrt{\frac{49}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{25}{8}=\frac{7}{8} x-\frac{25}{8}=-\frac{7}{8}
Whakarūnātia.
x=4 x=\frac{9}{4}
Me tāpiri \frac{25}{8} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}