Whakaoti mō x
x = -\frac{25}{2} = -12\frac{1}{2} = -12.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-2-\frac{1}{2}x-\frac{1}{2}=\frac{5}{6}\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{2} ki te x+1.
\frac{1}{2}x-2-\frac{1}{2}=\frac{5}{6}\left(x+2\right)
Pahekotia te x me -\frac{1}{2}x, ka \frac{1}{2}x.
\frac{1}{2}x-\frac{4}{2}-\frac{1}{2}=\frac{5}{6}\left(x+2\right)
Me tahuri te -2 ki te hautau -\frac{4}{2}.
\frac{1}{2}x+\frac{-4-1}{2}=\frac{5}{6}\left(x+2\right)
Tā te mea he rite te tauraro o -\frac{4}{2} me \frac{1}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{2}x-\frac{5}{2}=\frac{5}{6}\left(x+2\right)
Tangohia te 1 i te -4, ka -5.
\frac{1}{2}x-\frac{5}{2}=\frac{5}{6}x+\frac{5}{6}\times 2
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{5}{6} ki te x+2.
\frac{1}{2}x-\frac{5}{2}=\frac{5}{6}x+\frac{5\times 2}{6}
Tuhia te \frac{5}{6}\times 2 hei hautanga kotahi.
\frac{1}{2}x-\frac{5}{2}=\frac{5}{6}x+\frac{10}{6}
Whakareatia te 5 ki te 2, ka 10.
\frac{1}{2}x-\frac{5}{2}=\frac{5}{6}x+\frac{5}{3}
Whakahekea te hautanga \frac{10}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{1}{2}x-\frac{5}{2}-\frac{5}{6}x=\frac{5}{3}
Tangohia te \frac{5}{6}x mai i ngā taha e rua.
-\frac{1}{3}x-\frac{5}{2}=\frac{5}{3}
Pahekotia te \frac{1}{2}x me -\frac{5}{6}x, ka -\frac{1}{3}x.
-\frac{1}{3}x=\frac{5}{3}+\frac{5}{2}
Me tāpiri te \frac{5}{2} ki ngā taha e rua.
-\frac{1}{3}x=\frac{10}{6}+\frac{15}{6}
Ko te maha noa iti rawa atu o 3 me 2 ko 6. Me tahuri \frac{5}{3} me \frac{5}{2} ki te hautau me te tautūnga 6.
-\frac{1}{3}x=\frac{10+15}{6}
Tā te mea he rite te tauraro o \frac{10}{6} me \frac{15}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{1}{3}x=\frac{25}{6}
Tāpirihia te 10 ki te 15, ka 25.
x=\frac{25}{6}\left(-3\right)
Me whakarea ngā taha e rua ki te -3, te tau utu o -\frac{1}{3}.
x=\frac{25\left(-3\right)}{6}
Tuhia te \frac{25}{6}\left(-3\right) hei hautanga kotahi.
x=\frac{-75}{6}
Whakareatia te 25 ki te -3, ka -75.
x=-\frac{25}{2}
Whakahekea te hautanga \frac{-75}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}