Whakaoti mō x
x=-9
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+x-6-\left(x+5\right)\left(x-7\right)=2
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te x+3 ka whakakotahi i ngā kupu rite.
x^{2}+x-6-\left(x^{2}-2x-35\right)=2
Whakamahia te āhuatanga tuaritanga hei whakarea te x+5 ki te x-7 ka whakakotahi i ngā kupu rite.
x^{2}+x-6-x^{2}+2x+35=2
Hei kimi i te tauaro o x^{2}-2x-35, kimihia te tauaro o ia taurangi.
x-6+2x+35=2
Pahekotia te x^{2} me -x^{2}, ka 0.
3x-6+35=2
Pahekotia te x me 2x, ka 3x.
3x+29=2
Tāpirihia te -6 ki te 35, ka 29.
3x=2-29
Tangohia te 29 mai i ngā taha e rua.
3x=-27
Tangohia te 29 i te 2, ka -27.
x=\frac{-27}{3}
Whakawehea ngā taha e rua ki te 3.
x=-9
Whakawehea te -27 ki te 3, kia riro ko -9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}