Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{3}-6x^{2}+12x-8=64
Whakamahia te ture huarua \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} hei whakaroha \left(x-2\right)^{3}.
x^{3}-6x^{2}+12x-8-64=0
Tangohia te 64 mai i ngā taha e rua.
x^{3}-6x^{2}+12x-72=0
Tangohia te 64 i te -8, ka -72.
±72,±36,±24,±18,±12,±9,±8,±6,±4,±3,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -72, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=6
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{2}+12=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{3}-6x^{2}+12x-72 ki te x-6, kia riro ko x^{2}+12. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{0±\sqrt{0^{2}-4\times 1\times 12}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 0 mō te b, me te 12 mō te c i te ture pūrua.
x=\frac{0±\sqrt{-48}}{2}
Mahia ngā tātaitai.
x=-2i\sqrt{3} x=2i\sqrt{3}
Whakaotia te whārite x^{2}+12=0 ina he tōrunga te ±, ina he tōraro te ±.
x=6 x=-2i\sqrt{3} x=2i\sqrt{3}
Rārangitia ngā otinga katoa i kitea.
x^{3}-6x^{2}+12x-8=64
Whakamahia te ture huarua \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} hei whakaroha \left(x-2\right)^{3}.
x^{3}-6x^{2}+12x-8-64=0
Tangohia te 64 mai i ngā taha e rua.
x^{3}-6x^{2}+12x-72=0
Tangohia te 64 i te -8, ka -72.
±72,±36,±24,±18,±12,±9,±8,±6,±4,±3,±2,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -72, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
x=6
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
x^{2}+12=0
Mā te whakatakotoranga Tauwehe, he tauwehe te x-k o te pūrau mō ia pūtake k. Whakawehea te x^{3}-6x^{2}+12x-72 ki te x-6, kia riro ko x^{2}+12. Whakaotihia te whārite ina ōrite te hua ki te 0.
x=\frac{0±\sqrt{0^{2}-4\times 1\times 12}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te 0 mō te b, me te 12 mō te c i te ture pūrua.
x=\frac{0±\sqrt{-48}}{2}
Mahia ngā tātaitai.
x\in \emptyset
Tā te mea e kore te pūrua o tētahi tau tōraro e tautohutia ki te āpure tūturu, kāhore he rongoā.
x=6
Rārangitia ngā otinga katoa i kitea.