Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-4x+4-\left(x-3\right)\left(x+3\right)=2x+4
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
x^{2}-4x+4-\left(x^{2}-9\right)=2x+4
Whakaarohia te \left(x-3\right)\left(x+3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 3.
x^{2}-4x+4-x^{2}+9=2x+4
Hei kimi i te tauaro o x^{2}-9, kimihia te tauaro o ia taurangi.
-4x+4+9=2x+4
Pahekotia te x^{2} me -x^{2}, ka 0.
-4x+13=2x+4
Tāpirihia te 4 ki te 9, ka 13.
-4x+13-2x=4
Tangohia te 2x mai i ngā taha e rua.
-6x+13=4
Pahekotia te -4x me -2x, ka -6x.
-6x=4-13
Tangohia te 13 mai i ngā taha e rua.
-6x=-9
Tangohia te 13 i te 4, ka -9.
x=\frac{-9}{-6}
Whakawehea ngā taha e rua ki te -6.
x=\frac{3}{2}
Whakahekea te hautanga \frac{-9}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -3.