Whakaoti mō x
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-4x+4-\left(x-3\right)\left(x+3\right)=2x+4
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
x^{2}-4x+4-\left(x^{2}-9\right)=2x+4
Whakaarohia te \left(x-3\right)\left(x+3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 3.
x^{2}-4x+4-x^{2}+9=2x+4
Hei kimi i te tauaro o x^{2}-9, kimihia te tauaro o ia taurangi.
-4x+4+9=2x+4
Pahekotia te x^{2} me -x^{2}, ka 0.
-4x+13=2x+4
Tāpirihia te 4 ki te 9, ka 13.
-4x+13-2x=4
Tangohia te 2x mai i ngā taha e rua.
-6x+13=4
Pahekotia te -4x me -2x, ka -6x.
-6x=4-13
Tangohia te 13 mai i ngā taha e rua.
-6x=-9
Tangohia te 13 i te 4, ka -9.
x=\frac{-9}{-6}
Whakawehea ngā taha e rua ki te -6.
x=\frac{3}{2}
Whakahekea te hautanga \frac{-9}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}