Whakaoti mō x
x<\frac{1}{4}
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-4x+4>x\left(x+12\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
x^{2}-4x+4>x^{2}+12x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+12.
x^{2}-4x+4-x^{2}>12x
Tangohia te x^{2} mai i ngā taha e rua.
-4x+4>12x
Pahekotia te x^{2} me -x^{2}, ka 0.
-4x+4-12x>0
Tangohia te 12x mai i ngā taha e rua.
-16x+4>0
Pahekotia te -4x me -12x, ka -16x.
-16x>-4
Tangohia te 4 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x<\frac{-4}{-16}
Whakawehea ngā taha e rua ki te -16. I te mea he tōraro a -16, ka huri te ahunga koreōrite.
x<\frac{1}{4}
Whakahekea te hautanga \frac{-4}{-16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}