Whakaoti mō x
x = \frac{\sqrt{13} + 5}{2} \approx 4.302775638
x=\frac{5-\sqrt{13}}{2}\approx 0.697224362
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-4x+4=1+x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
x^{2}-4x+4-1=x
Tangohia te 1 mai i ngā taha e rua.
x^{2}-4x+3=x
Tangohia te 1 i te 4, ka 3.
x^{2}-4x+3-x=0
Tangohia te x mai i ngā taha e rua.
x^{2}-5x+3=0
Pahekotia te -4x me -x, ka -5x.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 3}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -5 mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 3}}{2}
Pūrua -5.
x=\frac{-\left(-5\right)±\sqrt{25-12}}{2}
Whakareatia -4 ki te 3.
x=\frac{-\left(-5\right)±\sqrt{13}}{2}
Tāpiri 25 ki te -12.
x=\frac{5±\sqrt{13}}{2}
Ko te tauaro o -5 ko 5.
x=\frac{\sqrt{13}+5}{2}
Nā, me whakaoti te whārite x=\frac{5±\sqrt{13}}{2} ina he tāpiri te ±. Tāpiri 5 ki te \sqrt{13}.
x=\frac{5-\sqrt{13}}{2}
Nā, me whakaoti te whārite x=\frac{5±\sqrt{13}}{2} ina he tango te ±. Tango \sqrt{13} mai i 5.
x=\frac{\sqrt{13}+5}{2} x=\frac{5-\sqrt{13}}{2}
Kua oti te whārite te whakatau.
x^{2}-4x+4=1+x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
x^{2}-4x+4-x=1
Tangohia te x mai i ngā taha e rua.
x^{2}-5x+4=1
Pahekotia te -4x me -x, ka -5x.
x^{2}-5x=1-4
Tangohia te 4 mai i ngā taha e rua.
x^{2}-5x=-3
Tangohia te 4 i te 1, ka -3.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-3+\left(-\frac{5}{2}\right)^{2}
Whakawehea te -5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{2}. Nā, tāpiria te pūrua o te -\frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-5x+\frac{25}{4}=-3+\frac{25}{4}
Pūruatia -\frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-5x+\frac{25}{4}=\frac{13}{4}
Tāpiri -3 ki te \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{13}{4}
Tauwehea x^{2}-5x+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{13}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{2}=\frac{\sqrt{13}}{2} x-\frac{5}{2}=-\frac{\sqrt{13}}{2}
Whakarūnātia.
x=\frac{\sqrt{13}+5}{2} x=\frac{5-\sqrt{13}}{2}
Me tāpiri \frac{5}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}