Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-4x+4+1=2x-3
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
x^{2}-4x+5=2x-3
Tāpirihia te 4 ki te 1, ka 5.
x^{2}-4x+5-2x=-3
Tangohia te 2x mai i ngā taha e rua.
x^{2}-6x+5=-3
Pahekotia te -4x me -2x, ka -6x.
x^{2}-6x+5+3=0
Me tāpiri te 3 ki ngā taha e rua.
x^{2}-6x+8=0
Tāpirihia te 5 ki te 3, ka 8.
a+b=-6 ab=8
Hei whakaoti i te whārite, whakatauwehea te x^{2}-6x+8 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-8 -2,-4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 8.
-1-8=-9 -2-4=-6
Tātaihia te tapeke mō ia takirua.
a=-4 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -6.
\left(x-4\right)\left(x-2\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=4 x=2
Hei kimi otinga whārite, me whakaoti te x-4=0 me te x-2=0.
x^{2}-4x+4+1=2x-3
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
x^{2}-4x+5=2x-3
Tāpirihia te 4 ki te 1, ka 5.
x^{2}-4x+5-2x=-3
Tangohia te 2x mai i ngā taha e rua.
x^{2}-6x+5=-3
Pahekotia te -4x me -2x, ka -6x.
x^{2}-6x+5+3=0
Me tāpiri te 3 ki ngā taha e rua.
x^{2}-6x+8=0
Tāpirihia te 5 ki te 3, ka 8.
a+b=-6 ab=1\times 8=8
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+8. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-8 -2,-4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 8.
-1-8=-9 -2-4=-6
Tātaihia te tapeke mō ia takirua.
a=-4 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -6.
\left(x^{2}-4x\right)+\left(-2x+8\right)
Tuhia anō te x^{2}-6x+8 hei \left(x^{2}-4x\right)+\left(-2x+8\right).
x\left(x-4\right)-2\left(x-4\right)
Tauwehea te x i te tuatahi me te -2 i te rōpū tuarua.
\left(x-4\right)\left(x-2\right)
Whakatauwehea atu te kīanga pātahi x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
x=4 x=2
Hei kimi otinga whārite, me whakaoti te x-4=0 me te x-2=0.
x^{2}-4x+4+1=2x-3
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
x^{2}-4x+5=2x-3
Tāpirihia te 4 ki te 1, ka 5.
x^{2}-4x+5-2x=-3
Tangohia te 2x mai i ngā taha e rua.
x^{2}-6x+5=-3
Pahekotia te -4x me -2x, ka -6x.
x^{2}-6x+5+3=0
Me tāpiri te 3 ki ngā taha e rua.
x^{2}-6x+8=0
Tāpirihia te 5 ki te 3, ka 8.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 8}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -6 mō b, me 8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 8}}{2}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36-32}}{2}
Whakareatia -4 ki te 8.
x=\frac{-\left(-6\right)±\sqrt{4}}{2}
Tāpiri 36 ki te -32.
x=\frac{-\left(-6\right)±2}{2}
Tuhia te pūtakerua o te 4.
x=\frac{6±2}{2}
Ko te tauaro o -6 ko 6.
x=\frac{8}{2}
Nā, me whakaoti te whārite x=\frac{6±2}{2} ina he tāpiri te ±. Tāpiri 6 ki te 2.
x=4
Whakawehe 8 ki te 2.
x=\frac{4}{2}
Nā, me whakaoti te whārite x=\frac{6±2}{2} ina he tango te ±. Tango 2 mai i 6.
x=2
Whakawehe 4 ki te 2.
x=4 x=2
Kua oti te whārite te whakatau.
x^{2}-4x+4+1=2x-3
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
x^{2}-4x+5=2x-3
Tāpirihia te 4 ki te 1, ka 5.
x^{2}-4x+5-2x=-3
Tangohia te 2x mai i ngā taha e rua.
x^{2}-6x+5=-3
Pahekotia te -4x me -2x, ka -6x.
x^{2}-6x=-3-5
Tangohia te 5 mai i ngā taha e rua.
x^{2}-6x=-8
Tangohia te 5 i te -3, ka -8.
x^{2}-6x+\left(-3\right)^{2}=-8+\left(-3\right)^{2}
Whakawehea te -6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -3. Nā, tāpiria te pūrua o te -3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-6x+9=-8+9
Pūrua -3.
x^{2}-6x+9=1
Tāpiri -8 ki te 9.
\left(x-3\right)^{2}=1
Tauwehea x^{2}-6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-3=1 x-3=-1
Whakarūnātia.
x=4 x=2
Me tāpiri 3 ki ngā taha e rua o te whārite.