Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x-11\right)\left(x-0\right)+0\times 15\times 0\times 1=0
Whakareatia te 0 ki te 85, ka 0.
x\left(x-0\right)-11\left(x-0\right)+0\times 15\times 0\times 1=0
Whakamahia te āhuatanga tohatoha hei whakarea te x-11 ki te x-0.
x\left(x-0\right)-11\left(x-0\right)+0\times 0\times 1=0
Whakareatia te 0 ki te 15, ka 0.
x\left(x-0\right)-11\left(x-0\right)+0\times 1=0
Whakareatia te 0 ki te 0, ka 0.
x\left(x-0\right)-11\left(x-0\right)+0=0
Whakareatia te 0 ki te 1, ka 0.
x\left(x-0\right)-11\left(x-0\right)=0
Ko te tau i tāpiria he kore ka hua koia tonu.
xx-11x=0
Whakaraupapatia anō ngā kīanga tau.
x^{2}-11x=0
Whakareatia te x ki te x, ka x^{2}.
x\left(x-11\right)=0
Tauwehea te x.
x=0 x=11
Hei kimi otinga whārite, me whakaoti te x=0 me te x-11=0.
\left(x-11\right)\left(x-0\right)+0\times 15\times 0\times 1=0
Whakareatia te 0 ki te 85, ka 0.
x\left(x-0\right)-11\left(x-0\right)+0\times 15\times 0\times 1=0
Whakamahia te āhuatanga tohatoha hei whakarea te x-11 ki te x-0.
x\left(x-0\right)-11\left(x-0\right)+0\times 0\times 1=0
Whakareatia te 0 ki te 15, ka 0.
x\left(x-0\right)-11\left(x-0\right)+0\times 1=0
Whakareatia te 0 ki te 0, ka 0.
x\left(x-0\right)-11\left(x-0\right)+0=0
Whakareatia te 0 ki te 1, ka 0.
x\left(x-0\right)-11\left(x-0\right)=0
Ko te tau i tāpiria he kore ka hua koia tonu.
xx-11x=0
Whakaraupapatia anō ngā kīanga tau.
x^{2}-11x=0
Whakareatia te x ki te x, ka x^{2}.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -11 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±11}{2}
Tuhia te pūtakerua o te \left(-11\right)^{2}.
x=\frac{11±11}{2}
Ko te tauaro o -11 ko 11.
x=\frac{22}{2}
Nā, me whakaoti te whārite x=\frac{11±11}{2} ina he tāpiri te ±. Tāpiri 11 ki te 11.
x=11
Whakawehe 22 ki te 2.
x=\frac{0}{2}
Nā, me whakaoti te whārite x=\frac{11±11}{2} ina he tango te ±. Tango 11 mai i 11.
x=0
Whakawehe 0 ki te 2.
x=11 x=0
Kua oti te whārite te whakatau.
\left(x-11\right)\left(x-0\right)+0\times 15\times 0\times 1=0
Whakareatia te 0 ki te 85, ka 0.
x\left(x-0\right)-11\left(x-0\right)+0\times 15\times 0\times 1=0
Whakamahia te āhuatanga tohatoha hei whakarea te x-11 ki te x-0.
x\left(x-0\right)-11\left(x-0\right)+0\times 0\times 1=0
Whakareatia te 0 ki te 15, ka 0.
x\left(x-0\right)-11\left(x-0\right)+0\times 1=0
Whakareatia te 0 ki te 0, ka 0.
x\left(x-0\right)-11\left(x-0\right)+0=0
Whakareatia te 0 ki te 1, ka 0.
x\left(x-0\right)-11\left(x-0\right)=0
Ko te tau i tāpiria he kore ka hua koia tonu.
xx-11x=0
Whakaraupapatia anō ngā kīanga tau.
x^{2}-11x=0
Whakareatia te x ki te x, ka x^{2}.
x^{2}-11x+\left(-\frac{11}{2}\right)^{2}=\left(-\frac{11}{2}\right)^{2}
Whakawehea te -11, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{11}{2}. Nā, tāpiria te pūrua o te -\frac{11}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-11x+\frac{121}{4}=\frac{121}{4}
Pūruatia -\frac{11}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x-\frac{11}{2}\right)^{2}=\frac{121}{4}
Tauwehea x^{2}-11x+\frac{121}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{11}{2}=\frac{11}{2} x-\frac{11}{2}=-\frac{11}{2}
Whakarūnātia.
x=11 x=0
Me tāpiri \frac{11}{2} ki ngā taha e rua o te whārite.