Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

40x-x^{2}-300=144
Whakamahia te āhuatanga tuaritanga hei whakarea te x-10 ki te 30-x ka whakakotahi i ngā kupu rite.
40x-x^{2}-300-144=0
Tangohia te 144 mai i ngā taha e rua.
40x-x^{2}-444=0
Tangohia te 144 i te -300, ka -444.
-x^{2}+40x-444=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-40±\sqrt{40^{2}-4\left(-1\right)\left(-444\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 40 mō b, me -444 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-40±\sqrt{1600-4\left(-1\right)\left(-444\right)}}{2\left(-1\right)}
Pūrua 40.
x=\frac{-40±\sqrt{1600+4\left(-444\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-40±\sqrt{1600-1776}}{2\left(-1\right)}
Whakareatia 4 ki te -444.
x=\frac{-40±\sqrt{-176}}{2\left(-1\right)}
Tāpiri 1600 ki te -1776.
x=\frac{-40±4\sqrt{11}i}{2\left(-1\right)}
Tuhia te pūtakerua o te -176.
x=\frac{-40±4\sqrt{11}i}{-2}
Whakareatia 2 ki te -1.
x=\frac{-40+4\sqrt{11}i}{-2}
Nā, me whakaoti te whārite x=\frac{-40±4\sqrt{11}i}{-2} ina he tāpiri te ±. Tāpiri -40 ki te 4i\sqrt{11}.
x=-2\sqrt{11}i+20
Whakawehe -40+4i\sqrt{11} ki te -2.
x=\frac{-4\sqrt{11}i-40}{-2}
Nā, me whakaoti te whārite x=\frac{-40±4\sqrt{11}i}{-2} ina he tango te ±. Tango 4i\sqrt{11} mai i -40.
x=20+2\sqrt{11}i
Whakawehe -40-4i\sqrt{11} ki te -2.
x=-2\sqrt{11}i+20 x=20+2\sqrt{11}i
Kua oti te whārite te whakatau.
40x-x^{2}-300=144
Whakamahia te āhuatanga tuaritanga hei whakarea te x-10 ki te 30-x ka whakakotahi i ngā kupu rite.
40x-x^{2}=144+300
Me tāpiri te 300 ki ngā taha e rua.
40x-x^{2}=444
Tāpirihia te 144 ki te 300, ka 444.
-x^{2}+40x=444
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+40x}{-1}=\frac{444}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{40}{-1}x=\frac{444}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-40x=\frac{444}{-1}
Whakawehe 40 ki te -1.
x^{2}-40x=-444
Whakawehe 444 ki te -1.
x^{2}-40x+\left(-20\right)^{2}=-444+\left(-20\right)^{2}
Whakawehea te -40, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -20. Nā, tāpiria te pūrua o te -20 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-40x+400=-444+400
Pūrua -20.
x^{2}-40x+400=-44
Tāpiri -444 ki te 400.
\left(x-20\right)^{2}=-44
Tauwehea x^{2}-40x+400. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-20\right)^{2}}=\sqrt{-44}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-20=2\sqrt{11}i x-20=-2\sqrt{11}i
Whakarūnātia.
x=20+2\sqrt{11}i x=-2\sqrt{11}i+20
Me tāpiri 20 ki ngā taha e rua o te whārite.