Whakaoti mō x (complex solution)
x=-2\sqrt{11}i+20\approx 20-6.633249581i
x=20+2\sqrt{11}i\approx 20+6.633249581i
Graph
Tohaina
Kua tāruatia ki te papatopenga
40x-x^{2}-300=144
Whakamahia te āhuatanga tuaritanga hei whakarea te x-10 ki te 30-x ka whakakotahi i ngā kupu rite.
40x-x^{2}-300-144=0
Tangohia te 144 mai i ngā taha e rua.
40x-x^{2}-444=0
Tangohia te 144 i te -300, ka -444.
-x^{2}+40x-444=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-40±\sqrt{40^{2}-4\left(-1\right)\left(-444\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 40 mō b, me -444 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-40±\sqrt{1600-4\left(-1\right)\left(-444\right)}}{2\left(-1\right)}
Pūrua 40.
x=\frac{-40±\sqrt{1600+4\left(-444\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-40±\sqrt{1600-1776}}{2\left(-1\right)}
Whakareatia 4 ki te -444.
x=\frac{-40±\sqrt{-176}}{2\left(-1\right)}
Tāpiri 1600 ki te -1776.
x=\frac{-40±4\sqrt{11}i}{2\left(-1\right)}
Tuhia te pūtakerua o te -176.
x=\frac{-40±4\sqrt{11}i}{-2}
Whakareatia 2 ki te -1.
x=\frac{-40+4\sqrt{11}i}{-2}
Nā, me whakaoti te whārite x=\frac{-40±4\sqrt{11}i}{-2} ina he tāpiri te ±. Tāpiri -40 ki te 4i\sqrt{11}.
x=-2\sqrt{11}i+20
Whakawehe -40+4i\sqrt{11} ki te -2.
x=\frac{-4\sqrt{11}i-40}{-2}
Nā, me whakaoti te whārite x=\frac{-40±4\sqrt{11}i}{-2} ina he tango te ±. Tango 4i\sqrt{11} mai i -40.
x=20+2\sqrt{11}i
Whakawehe -40-4i\sqrt{11} ki te -2.
x=-2\sqrt{11}i+20 x=20+2\sqrt{11}i
Kua oti te whārite te whakatau.
40x-x^{2}-300=144
Whakamahia te āhuatanga tuaritanga hei whakarea te x-10 ki te 30-x ka whakakotahi i ngā kupu rite.
40x-x^{2}=144+300
Me tāpiri te 300 ki ngā taha e rua.
40x-x^{2}=444
Tāpirihia te 144 ki te 300, ka 444.
-x^{2}+40x=444
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+40x}{-1}=\frac{444}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{40}{-1}x=\frac{444}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-40x=\frac{444}{-1}
Whakawehe 40 ki te -1.
x^{2}-40x=-444
Whakawehe 444 ki te -1.
x^{2}-40x+\left(-20\right)^{2}=-444+\left(-20\right)^{2}
Whakawehea te -40, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -20. Nā, tāpiria te pūrua o te -20 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-40x+400=-444+400
Pūrua -20.
x^{2}-40x+400=-44
Tāpiri -444 ki te 400.
\left(x-20\right)^{2}=-44
Tauwehea x^{2}-40x+400. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-20\right)^{2}}=\sqrt{-44}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-20=2\sqrt{11}i x-20=-2\sqrt{11}i
Whakarūnātia.
x=20+2\sqrt{11}i x=-2\sqrt{11}i+20
Me tāpiri 20 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}