Aromātai
14-2x
Whakaroha
14-2x
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-2x-x+2-\left(x+3\right)\left(x-4\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o x-1 ki ia tau o x-2.
x^{2}-3x+2-\left(x+3\right)\left(x-4\right)
Pahekotia te -2x me -x, ka -3x.
x^{2}-3x+2-\left(x^{2}-4x+3x-12\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o x+3 ki ia tau o x-4.
x^{2}-3x+2-\left(x^{2}-x-12\right)
Pahekotia te -4x me 3x, ka -x.
x^{2}-3x+2-x^{2}-\left(-x\right)-\left(-12\right)
Hei kimi i te tauaro o x^{2}-x-12, kimihia te tauaro o ia taurangi.
x^{2}-3x+2-x^{2}+x-\left(-12\right)
Ko te tauaro o -x ko x.
x^{2}-3x+2-x^{2}+x+12
Ko te tauaro o -12 ko 12.
-3x+2+x+12
Pahekotia te x^{2} me -x^{2}, ka 0.
-2x+2+12
Pahekotia te -3x me x, ka -2x.
-2x+14
Tāpirihia te 2 ki te 12, ka 14.
x^{2}-2x-x+2-\left(x+3\right)\left(x-4\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o x-1 ki ia tau o x-2.
x^{2}-3x+2-\left(x+3\right)\left(x-4\right)
Pahekotia te -2x me -x, ka -3x.
x^{2}-3x+2-\left(x^{2}-4x+3x-12\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o x+3 ki ia tau o x-4.
x^{2}-3x+2-\left(x^{2}-x-12\right)
Pahekotia te -4x me 3x, ka -x.
x^{2}-3x+2-x^{2}-\left(-x\right)-\left(-12\right)
Hei kimi i te tauaro o x^{2}-x-12, kimihia te tauaro o ia taurangi.
x^{2}-3x+2-x^{2}+x-\left(-12\right)
Ko te tauaro o -x ko x.
x^{2}-3x+2-x^{2}+x+12
Ko te tauaro o -12 ko 12.
-3x+2+x+12
Pahekotia te x^{2} me -x^{2}, ka 0.
-2x+2+12
Pahekotia te -3x me x, ka -2x.
-2x+14
Tāpirihia te 2 ki te 12, ka 14.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}