Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{3}-1-9-2x\leq \left(x-1\right)^{3}+x\left(3x-2\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x-1 ki te x^{2}+x+1 ka whakakotahi i ngā kupu rite.
x^{3}-10-2x\leq \left(x-1\right)^{3}+x\left(3x-2\right)
Tangohia te 9 i te -1, ka -10.
x^{3}-10-2x\leq x^{3}-3x^{2}+3x-1+x\left(3x-2\right)
Whakamahia te ture huarua \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} hei whakaroha \left(x-1\right)^{3}.
x^{3}-10-2x\leq x^{3}-3x^{2}+3x-1+3x^{2}-2x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 3x-2.
x^{3}-10-2x\leq x^{3}+3x-1-2x
Pahekotia te -3x^{2} me 3x^{2}, ka 0.
x^{3}-10-2x\leq x^{3}+x-1
Pahekotia te 3x me -2x, ka x.
x^{3}-10-2x-x^{3}\leq x-1
Tangohia te x^{3} mai i ngā taha e rua.
-10-2x\leq x-1
Pahekotia te x^{3} me -x^{3}, ka 0.
-10-2x-x\leq -1
Tangohia te x mai i ngā taha e rua.
-10-3x\leq -1
Pahekotia te -2x me -x, ka -3x.
-3x\leq -1+10
Me tāpiri te 10 ki ngā taha e rua.
-3x\leq 9
Tāpirihia te -1 ki te 10, ka 9.
x\geq \frac{9}{-3}
Whakawehea ngā taha e rua ki te -3. I te mea he tōraro a -3, ka huri te ahunga koreōrite.
x\geq -3
Whakawehea te 9 ki te -3, kia riro ko -3.