Whakaoti mō x
x\geq -3
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{3}-1-9-2x\leq \left(x-1\right)^{3}+x\left(3x-2\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x-1 ki te x^{2}+x+1 ka whakakotahi i ngā kupu rite.
x^{3}-10-2x\leq \left(x-1\right)^{3}+x\left(3x-2\right)
Tangohia te 9 i te -1, ka -10.
x^{3}-10-2x\leq x^{3}-3x^{2}+3x-1+x\left(3x-2\right)
Whakamahia te ture huarua \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} hei whakaroha \left(x-1\right)^{3}.
x^{3}-10-2x\leq x^{3}-3x^{2}+3x-1+3x^{2}-2x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 3x-2.
x^{3}-10-2x\leq x^{3}+3x-1-2x
Pahekotia te -3x^{2} me 3x^{2}, ka 0.
x^{3}-10-2x\leq x^{3}+x-1
Pahekotia te 3x me -2x, ka x.
x^{3}-10-2x-x^{3}\leq x-1
Tangohia te x^{3} mai i ngā taha e rua.
-10-2x\leq x-1
Pahekotia te x^{3} me -x^{3}, ka 0.
-10-2x-x\leq -1
Tangohia te x mai i ngā taha e rua.
-10-3x\leq -1
Pahekotia te -2x me -x, ka -3x.
-3x\leq -1+10
Me tāpiri te 10 ki ngā taha e rua.
-3x\leq 9
Tāpirihia te -1 ki te 10, ka 9.
x\geq \frac{9}{-3}
Whakawehea ngā taha e rua ki te -3. I te mea he tōraro a -3, ka huri te ahunga koreōrite.
x\geq -3
Whakawehea te 9 ki te -3, kia riro ko -3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}