Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+x-2-x\left(x+3\right)=\left(x-2\right)\left(x+2\right)-\left(x-1\right)^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te x-1 ki te x+2 ka whakakotahi i ngā kupu rite.
x^{2}+x-2-\left(x^{2}+3x\right)=\left(x-2\right)\left(x+2\right)-\left(x-1\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+3.
x^{2}+x-2-x^{2}-3x=\left(x-2\right)\left(x+2\right)-\left(x-1\right)^{2}
Hei kimi i te tauaro o x^{2}+3x, kimihia te tauaro o ia taurangi.
x-2-3x=\left(x-2\right)\left(x+2\right)-\left(x-1\right)^{2}
Pahekotia te x^{2} me -x^{2}, ka 0.
-2x-2=\left(x-2\right)\left(x+2\right)-\left(x-1\right)^{2}
Pahekotia te x me -3x, ka -2x.
-2x-2=x^{2}-4-\left(x-1\right)^{2}
Whakaarohia te \left(x-2\right)\left(x+2\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 2.
-2x-2=x^{2}-4-\left(x^{2}-2x+1\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
-2x-2=x^{2}-4-x^{2}+2x-1
Hei kimi i te tauaro o x^{2}-2x+1, kimihia te tauaro o ia taurangi.
-2x-2=-4+2x-1
Pahekotia te x^{2} me -x^{2}, ka 0.
-2x-2=-5+2x
Tangohia te 1 i te -4, ka -5.
-2x-2-2x=-5
Tangohia te 2x mai i ngā taha e rua.
-4x-2=-5
Pahekotia te -2x me -2x, ka -4x.
-4x=-5+2
Me tāpiri te 2 ki ngā taha e rua.
-4x=-3
Tāpirihia te -5 ki te 2, ka -3.
x=\frac{-3}{-4}
Whakawehea ngā taha e rua ki te -4.
x=\frac{3}{4}
Ka taea te hautanga \frac{-3}{-4} te whakamāmā ki te \frac{3}{4} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.