Whakaoti mō x
x=-3
x=2
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
( x - 1 ) ( x + 2 ) + 3 x = 4 ( x - 2 ) - ( x - 12 )
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+x-2+3x=4\left(x-2\right)-\left(x-12\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x-1 ki te x+2 ka whakakotahi i ngā kupu rite.
x^{2}+4x-2=4\left(x-2\right)-\left(x-12\right)
Pahekotia te x me 3x, ka 4x.
x^{2}+4x-2=4x-8-\left(x-12\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x-2.
x^{2}+4x-2=4x-8-x+12
Hei kimi i te tauaro o x-12, kimihia te tauaro o ia taurangi.
x^{2}+4x-2=3x-8+12
Pahekotia te 4x me -x, ka 3x.
x^{2}+4x-2=3x+4
Tāpirihia te -8 ki te 12, ka 4.
x^{2}+4x-2-3x=4
Tangohia te 3x mai i ngā taha e rua.
x^{2}+x-2=4
Pahekotia te 4x me -3x, ka x.
x^{2}+x-2-4=0
Tangohia te 4 mai i ngā taha e rua.
x^{2}+x-6=0
Tangohia te 4 i te -2, ka -6.
x=\frac{-1±\sqrt{1^{2}-4\left(-6\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 1 mō b, me -6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-6\right)}}{2}
Pūrua 1.
x=\frac{-1±\sqrt{1+24}}{2}
Whakareatia -4 ki te -6.
x=\frac{-1±\sqrt{25}}{2}
Tāpiri 1 ki te 24.
x=\frac{-1±5}{2}
Tuhia te pūtakerua o te 25.
x=\frac{4}{2}
Nā, me whakaoti te whārite x=\frac{-1±5}{2} ina he tāpiri te ±. Tāpiri -1 ki te 5.
x=2
Whakawehe 4 ki te 2.
x=-\frac{6}{2}
Nā, me whakaoti te whārite x=\frac{-1±5}{2} ina he tango te ±. Tango 5 mai i -1.
x=-3
Whakawehe -6 ki te 2.
x=2 x=-3
Kua oti te whārite te whakatau.
x^{2}+x-2+3x=4\left(x-2\right)-\left(x-12\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x-1 ki te x+2 ka whakakotahi i ngā kupu rite.
x^{2}+4x-2=4\left(x-2\right)-\left(x-12\right)
Pahekotia te x me 3x, ka 4x.
x^{2}+4x-2=4x-8-\left(x-12\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x-2.
x^{2}+4x-2=4x-8-x+12
Hei kimi i te tauaro o x-12, kimihia te tauaro o ia taurangi.
x^{2}+4x-2=3x-8+12
Pahekotia te 4x me -x, ka 3x.
x^{2}+4x-2=3x+4
Tāpirihia te -8 ki te 12, ka 4.
x^{2}+4x-2-3x=4
Tangohia te 3x mai i ngā taha e rua.
x^{2}+x-2=4
Pahekotia te 4x me -3x, ka x.
x^{2}+x=4+2
Me tāpiri te 2 ki ngā taha e rua.
x^{2}+x=6
Tāpirihia te 4 ki te 2, ka 6.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=6+\left(\frac{1}{2}\right)^{2}
Whakawehea te 1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{2}. Nā, tāpiria te pūrua o te \frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+x+\frac{1}{4}=6+\frac{1}{4}
Pūruatia \frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+x+\frac{1}{4}=\frac{25}{4}
Tāpiri 6 ki te \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{25}{4}
Tauwehea x^{2}+x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{2}=\frac{5}{2} x+\frac{1}{2}=-\frac{5}{2}
Whakarūnātia.
x=2 x=-3
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}