Tīpoka ki ngā ihirangi matua
Whakaoti mō P (complex solution)
Tick mark Image
Whakaoti mō P
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(xP-P\right)x=x^{2}-3x+2
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te P.
Px^{2}-Px=x^{2}-3x+2
Whakamahia te āhuatanga tohatoha hei whakarea te xP-P ki te x.
\left(x^{2}-x\right)P=x^{2}-3x+2
Pahekotia ngā kīanga tau katoa e whai ana i te P.
\frac{\left(x^{2}-x\right)P}{x^{2}-x}=\frac{\left(x-2\right)\left(x-1\right)}{x^{2}-x}
Whakawehea ngā taha e rua ki te x^{2}-x.
P=\frac{\left(x-2\right)\left(x-1\right)}{x^{2}-x}
Mā te whakawehe ki te x^{2}-x ka wetekia te whakareanga ki te x^{2}-x.
P=\frac{x-2}{x}
Whakawehe \left(-2+x\right)\left(-1+x\right) ki te x^{2}-x.
\left(xP-P\right)x=x^{2}-3x+2
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te P.
Px^{2}-Px=x^{2}-3x+2
Whakamahia te āhuatanga tohatoha hei whakarea te xP-P ki te x.
\left(x^{2}-x\right)P=x^{2}-3x+2
Pahekotia ngā kīanga tau katoa e whai ana i te P.
\frac{\left(x^{2}-x\right)P}{x^{2}-x}=\frac{\left(x-2\right)\left(x-1\right)}{x^{2}-x}
Whakawehea ngā taha e rua ki te x^{2}-x.
P=\frac{\left(x-2\right)\left(x-1\right)}{x^{2}-x}
Mā te whakawehe ki te x^{2}-x ka wetekia te whakareanga ki te x^{2}-x.
P=\frac{x-2}{x}
Whakawehe \left(-2+x\right)\left(-1+x\right) ki te x^{2}-x.