Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}-2x+1-11=25
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
x^{2}-2x-10=25
Tangohia te 11 i te 1, ka -10.
x^{2}-2x-10-25=0
Tangohia te 25 mai i ngā taha e rua.
x^{2}-2x-35=0
Tangohia te 25 i te -10, ka -35.
a+b=-2 ab=-35
Hei whakaoti i te whārite, whakatauwehea te x^{2}-2x-35 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-35 5,-7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -35.
1-35=-34 5-7=-2
Tātaihia te tapeke mō ia takirua.
a=-7 b=5
Ko te otinga te takirua ka hoatu i te tapeke -2.
\left(x-7\right)\left(x+5\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=7 x=-5
Hei kimi otinga whārite, me whakaoti te x-7=0 me te x+5=0.
x^{2}-2x+1-11=25
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
x^{2}-2x-10=25
Tangohia te 11 i te 1, ka -10.
x^{2}-2x-10-25=0
Tangohia te 25 mai i ngā taha e rua.
x^{2}-2x-35=0
Tangohia te 25 i te -10, ka -35.
a+b=-2 ab=1\left(-35\right)=-35
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-35. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-35 5,-7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -35.
1-35=-34 5-7=-2
Tātaihia te tapeke mō ia takirua.
a=-7 b=5
Ko te otinga te takirua ka hoatu i te tapeke -2.
\left(x^{2}-7x\right)+\left(5x-35\right)
Tuhia anō te x^{2}-2x-35 hei \left(x^{2}-7x\right)+\left(5x-35\right).
x\left(x-7\right)+5\left(x-7\right)
Tauwehea te x i te tuatahi me te 5 i te rōpū tuarua.
\left(x-7\right)\left(x+5\right)
Whakatauwehea atu te kīanga pātahi x-7 mā te whakamahi i te āhuatanga tātai tohatoha.
x=7 x=-5
Hei kimi otinga whārite, me whakaoti te x-7=0 me te x+5=0.
x^{2}-2x+1-11=25
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
x^{2}-2x-10=25
Tangohia te 11 i te 1, ka -10.
x^{2}-2x-10-25=0
Tangohia te 25 mai i ngā taha e rua.
x^{2}-2x-35=0
Tangohia te 25 i te -10, ka -35.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-35\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -2 mō b, me -35 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-35\right)}}{2}
Pūrua -2.
x=\frac{-\left(-2\right)±\sqrt{4+140}}{2}
Whakareatia -4 ki te -35.
x=\frac{-\left(-2\right)±\sqrt{144}}{2}
Tāpiri 4 ki te 140.
x=\frac{-\left(-2\right)±12}{2}
Tuhia te pūtakerua o te 144.
x=\frac{2±12}{2}
Ko te tauaro o -2 ko 2.
x=\frac{14}{2}
Nā, me whakaoti te whārite x=\frac{2±12}{2} ina he tāpiri te ±. Tāpiri 2 ki te 12.
x=7
Whakawehe 14 ki te 2.
x=-\frac{10}{2}
Nā, me whakaoti te whārite x=\frac{2±12}{2} ina he tango te ±. Tango 12 mai i 2.
x=-5
Whakawehe -10 ki te 2.
x=7 x=-5
Kua oti te whārite te whakatau.
x^{2}-2x+1-11=25
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
x^{2}-2x-10=25
Tangohia te 11 i te 1, ka -10.
x^{2}-2x=25+10
Me tāpiri te 10 ki ngā taha e rua.
x^{2}-2x=35
Tāpirihia te 25 ki te 10, ka 35.
x^{2}-2x+1=35+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=36
Tāpiri 35 ki te 1.
\left(x-1\right)^{2}=36
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{36}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=6 x-1=-6
Whakarūnātia.
x=7 x=-5
Me tāpiri 1 ki ngā taha e rua o te whārite.