Whakaoti mō x
x=1
x=-\frac{1}{3}\approx -0.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-2x+1=4x\left(x-1\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
x^{2}-2x+1=4x^{2}-4x
Whakamahia te āhuatanga tohatoha hei whakarea te 4x ki te x-1.
x^{2}-2x+1-4x^{2}=-4x
Tangohia te 4x^{2} mai i ngā taha e rua.
-3x^{2}-2x+1=-4x
Pahekotia te x^{2} me -4x^{2}, ka -3x^{2}.
-3x^{2}-2x+1+4x=0
Me tāpiri te 4x ki ngā taha e rua.
-3x^{2}+2x+1=0
Pahekotia te -2x me 4x, ka 2x.
a+b=2 ab=-3=-3
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -3x^{2}+ax+bx+1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=3 b=-1
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-3x^{2}+3x\right)+\left(-x+1\right)
Tuhia anō te -3x^{2}+2x+1 hei \left(-3x^{2}+3x\right)+\left(-x+1\right).
3x\left(-x+1\right)-x+1
Whakatauwehea atu 3x i te -3x^{2}+3x.
\left(-x+1\right)\left(3x+1\right)
Whakatauwehea atu te kīanga pātahi -x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=1 x=-\frac{1}{3}
Hei kimi otinga whārite, me whakaoti te -x+1=0 me te 3x+1=0.
x^{2}-2x+1=4x\left(x-1\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
x^{2}-2x+1=4x^{2}-4x
Whakamahia te āhuatanga tohatoha hei whakarea te 4x ki te x-1.
x^{2}-2x+1-4x^{2}=-4x
Tangohia te 4x^{2} mai i ngā taha e rua.
-3x^{2}-2x+1=-4x
Pahekotia te x^{2} me -4x^{2}, ka -3x^{2}.
-3x^{2}-2x+1+4x=0
Me tāpiri te 4x ki ngā taha e rua.
-3x^{2}+2x+1=0
Pahekotia te -2x me 4x, ka 2x.
x=\frac{-2±\sqrt{2^{2}-4\left(-3\right)}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, 2 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-3\right)}}{2\left(-3\right)}
Pūrua 2.
x=\frac{-2±\sqrt{4+12}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-2±\sqrt{16}}{2\left(-3\right)}
Tāpiri 4 ki te 12.
x=\frac{-2±4}{2\left(-3\right)}
Tuhia te pūtakerua o te 16.
x=\frac{-2±4}{-6}
Whakareatia 2 ki te -3.
x=\frac{2}{-6}
Nā, me whakaoti te whārite x=\frac{-2±4}{-6} ina he tāpiri te ±. Tāpiri -2 ki te 4.
x=-\frac{1}{3}
Whakahekea te hautanga \frac{2}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{6}{-6}
Nā, me whakaoti te whārite x=\frac{-2±4}{-6} ina he tango te ±. Tango 4 mai i -2.
x=1
Whakawehe -6 ki te -6.
x=-\frac{1}{3} x=1
Kua oti te whārite te whakatau.
x^{2}-2x+1=4x\left(x-1\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
x^{2}-2x+1=4x^{2}-4x
Whakamahia te āhuatanga tohatoha hei whakarea te 4x ki te x-1.
x^{2}-2x+1-4x^{2}=-4x
Tangohia te 4x^{2} mai i ngā taha e rua.
-3x^{2}-2x+1=-4x
Pahekotia te x^{2} me -4x^{2}, ka -3x^{2}.
-3x^{2}-2x+1+4x=0
Me tāpiri te 4x ki ngā taha e rua.
-3x^{2}+2x+1=0
Pahekotia te -2x me 4x, ka 2x.
-3x^{2}+2x=-1
Tangohia te 1 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{-3x^{2}+2x}{-3}=-\frac{1}{-3}
Whakawehea ngā taha e rua ki te -3.
x^{2}+\frac{2}{-3}x=-\frac{1}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
x^{2}-\frac{2}{3}x=-\frac{1}{-3}
Whakawehe 2 ki te -3.
x^{2}-\frac{2}{3}x=\frac{1}{3}
Whakawehe -1 ki te -3.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=\frac{1}{3}+\left(-\frac{1}{3}\right)^{2}
Whakawehea te -\frac{2}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{3}. Nā, tāpiria te pūrua o te -\frac{1}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9}
Pūruatia -\frac{1}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{4}{9}
Tāpiri \frac{1}{3} ki te \frac{1}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9}
Tauwehea x^{2}-\frac{2}{3}x+\frac{1}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{3}=\frac{2}{3} x-\frac{1}{3}=-\frac{2}{3}
Whakarūnātia.
x=1 x=-\frac{1}{3}
Me tāpiri \frac{1}{3} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}