Aromātai
\left(x-2\right)\left(x+4\right)
Whakaroha
x^{2}+2x-8
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-2x+1+\left(x+2\right)^{2}-\left(x-3\right)\left(x+3\right)-22
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
x^{2}-2x+1+x^{2}+4x+4-\left(x-3\right)\left(x+3\right)-22
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2\right)^{2}.
2x^{2}-2x+1+4x+4-\left(x-3\right)\left(x+3\right)-22
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}+2x+1+4-\left(x-3\right)\left(x+3\right)-22
Pahekotia te -2x me 4x, ka 2x.
2x^{2}+2x+5-\left(x-3\right)\left(x+3\right)-22
Tāpirihia te 1 ki te 4, ka 5.
2x^{2}+2x+5-\left(x^{2}-9\right)-22
Whakaarohia te \left(x-3\right)\left(x+3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 3.
2x^{2}+2x+5-x^{2}+9-22
Hei kimi i te tauaro o x^{2}-9, kimihia te tauaro o ia taurangi.
x^{2}+2x+5+9-22
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
x^{2}+2x+14-22
Tāpirihia te 5 ki te 9, ka 14.
x^{2}+2x-8
Tangohia te 22 i te 14, ka -8.
x^{2}-2x+1+\left(x+2\right)^{2}-\left(x-3\right)\left(x+3\right)-22
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
x^{2}-2x+1+x^{2}+4x+4-\left(x-3\right)\left(x+3\right)-22
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2\right)^{2}.
2x^{2}-2x+1+4x+4-\left(x-3\right)\left(x+3\right)-22
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}+2x+1+4-\left(x-3\right)\left(x+3\right)-22
Pahekotia te -2x me 4x, ka 2x.
2x^{2}+2x+5-\left(x-3\right)\left(x+3\right)-22
Tāpirihia te 1 ki te 4, ka 5.
2x^{2}+2x+5-\left(x^{2}-9\right)-22
Whakaarohia te \left(x-3\right)\left(x+3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 3.
2x^{2}+2x+5-x^{2}+9-22
Hei kimi i te tauaro o x^{2}-9, kimihia te tauaro o ia taurangi.
x^{2}+2x+5+9-22
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
x^{2}+2x+14-22
Tāpirihia te 5 ki te 9, ka 14.
x^{2}+2x-8
Tangohia te 22 i te 14, ka -8.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}