Whakaoti mō x
x=-4
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-2x+1+\left(x+2\right)^{2}-\left(x-3\right)\left(x+3\right)=22
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
x^{2}-2x+1+x^{2}+4x+4-\left(x-3\right)\left(x+3\right)=22
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2\right)^{2}.
2x^{2}-2x+1+4x+4-\left(x-3\right)\left(x+3\right)=22
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}+2x+1+4-\left(x-3\right)\left(x+3\right)=22
Pahekotia te -2x me 4x, ka 2x.
2x^{2}+2x+5-\left(x-3\right)\left(x+3\right)=22
Tāpirihia te 1 ki te 4, ka 5.
2x^{2}+2x+5-\left(x^{2}-9\right)=22
Whakaarohia te \left(x-3\right)\left(x+3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 3.
2x^{2}+2x+5-x^{2}+9=22
Hei kimi i te tauaro o x^{2}-9, kimihia te tauaro o ia taurangi.
x^{2}+2x+5+9=22
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
x^{2}+2x+14=22
Tāpirihia te 5 ki te 9, ka 14.
x^{2}+2x+14-22=0
Tangohia te 22 mai i ngā taha e rua.
x^{2}+2x-8=0
Tangohia te 22 i te 14, ka -8.
a+b=2 ab=-8
Hei whakaoti i te whārite, whakatauwehea te x^{2}+2x-8 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,8 -2,4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -8.
-1+8=7 -2+4=2
Tātaihia te tapeke mō ia takirua.
a=-2 b=4
Ko te otinga te takirua ka hoatu i te tapeke 2.
\left(x-2\right)\left(x+4\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=2 x=-4
Hei kimi otinga whārite, me whakaoti te x-2=0 me te x+4=0.
x^{2}-2x+1+\left(x+2\right)^{2}-\left(x-3\right)\left(x+3\right)=22
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
x^{2}-2x+1+x^{2}+4x+4-\left(x-3\right)\left(x+3\right)=22
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2\right)^{2}.
2x^{2}-2x+1+4x+4-\left(x-3\right)\left(x+3\right)=22
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}+2x+1+4-\left(x-3\right)\left(x+3\right)=22
Pahekotia te -2x me 4x, ka 2x.
2x^{2}+2x+5-\left(x-3\right)\left(x+3\right)=22
Tāpirihia te 1 ki te 4, ka 5.
2x^{2}+2x+5-\left(x^{2}-9\right)=22
Whakaarohia te \left(x-3\right)\left(x+3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 3.
2x^{2}+2x+5-x^{2}+9=22
Hei kimi i te tauaro o x^{2}-9, kimihia te tauaro o ia taurangi.
x^{2}+2x+5+9=22
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
x^{2}+2x+14=22
Tāpirihia te 5 ki te 9, ka 14.
x^{2}+2x+14-22=0
Tangohia te 22 mai i ngā taha e rua.
x^{2}+2x-8=0
Tangohia te 22 i te 14, ka -8.
a+b=2 ab=1\left(-8\right)=-8
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-8. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,8 -2,4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -8.
-1+8=7 -2+4=2
Tātaihia te tapeke mō ia takirua.
a=-2 b=4
Ko te otinga te takirua ka hoatu i te tapeke 2.
\left(x^{2}-2x\right)+\left(4x-8\right)
Tuhia anō te x^{2}+2x-8 hei \left(x^{2}-2x\right)+\left(4x-8\right).
x\left(x-2\right)+4\left(x-2\right)
Tauwehea te x i te tuatahi me te 4 i te rōpū tuarua.
\left(x-2\right)\left(x+4\right)
Whakatauwehea atu te kīanga pātahi x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=2 x=-4
Hei kimi otinga whārite, me whakaoti te x-2=0 me te x+4=0.
x^{2}-2x+1+\left(x+2\right)^{2}-\left(x-3\right)\left(x+3\right)=22
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
x^{2}-2x+1+x^{2}+4x+4-\left(x-3\right)\left(x+3\right)=22
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2\right)^{2}.
2x^{2}-2x+1+4x+4-\left(x-3\right)\left(x+3\right)=22
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}+2x+1+4-\left(x-3\right)\left(x+3\right)=22
Pahekotia te -2x me 4x, ka 2x.
2x^{2}+2x+5-\left(x-3\right)\left(x+3\right)=22
Tāpirihia te 1 ki te 4, ka 5.
2x^{2}+2x+5-\left(x^{2}-9\right)=22
Whakaarohia te \left(x-3\right)\left(x+3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 3.
2x^{2}+2x+5-x^{2}+9=22
Hei kimi i te tauaro o x^{2}-9, kimihia te tauaro o ia taurangi.
x^{2}+2x+5+9=22
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
x^{2}+2x+14=22
Tāpirihia te 5 ki te 9, ka 14.
x^{2}+2x+14-22=0
Tangohia te 22 mai i ngā taha e rua.
x^{2}+2x-8=0
Tangohia te 22 i te 14, ka -8.
x=\frac{-2±\sqrt{2^{2}-4\left(-8\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 2 mō b, me -8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-8\right)}}{2}
Pūrua 2.
x=\frac{-2±\sqrt{4+32}}{2}
Whakareatia -4 ki te -8.
x=\frac{-2±\sqrt{36}}{2}
Tāpiri 4 ki te 32.
x=\frac{-2±6}{2}
Tuhia te pūtakerua o te 36.
x=\frac{4}{2}
Nā, me whakaoti te whārite x=\frac{-2±6}{2} ina he tāpiri te ±. Tāpiri -2 ki te 6.
x=2
Whakawehe 4 ki te 2.
x=-\frac{8}{2}
Nā, me whakaoti te whārite x=\frac{-2±6}{2} ina he tango te ±. Tango 6 mai i -2.
x=-4
Whakawehe -8 ki te 2.
x=2 x=-4
Kua oti te whārite te whakatau.
x^{2}-2x+1+\left(x+2\right)^{2}-\left(x-3\right)\left(x+3\right)=22
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
x^{2}-2x+1+x^{2}+4x+4-\left(x-3\right)\left(x+3\right)=22
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+2\right)^{2}.
2x^{2}-2x+1+4x+4-\left(x-3\right)\left(x+3\right)=22
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
2x^{2}+2x+1+4-\left(x-3\right)\left(x+3\right)=22
Pahekotia te -2x me 4x, ka 2x.
2x^{2}+2x+5-\left(x-3\right)\left(x+3\right)=22
Tāpirihia te 1 ki te 4, ka 5.
2x^{2}+2x+5-\left(x^{2}-9\right)=22
Whakaarohia te \left(x-3\right)\left(x+3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 3.
2x^{2}+2x+5-x^{2}+9=22
Hei kimi i te tauaro o x^{2}-9, kimihia te tauaro o ia taurangi.
x^{2}+2x+5+9=22
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
x^{2}+2x+14=22
Tāpirihia te 5 ki te 9, ka 14.
x^{2}+2x=22-14
Tangohia te 14 mai i ngā taha e rua.
x^{2}+2x=8
Tangohia te 14 i te 22, ka 8.
x^{2}+2x+1^{2}=8+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=8+1
Pūrua 1.
x^{2}+2x+1=9
Tāpiri 8 ki te 1.
\left(x+1\right)^{2}=9
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{9}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=3 x+1=-3
Whakarūnātia.
x=2 x=-4
Me tango 1 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}