Whakaoti mō x
x = -\frac{11}{5} = -2\frac{1}{5} = -2.2
x=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-2x+1+\left(2x+2\right)^{2}=16
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
x^{2}-2x+1+4x^{2}+8x+4=16
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+2\right)^{2}.
5x^{2}-2x+1+8x+4=16
Pahekotia te x^{2} me 4x^{2}, ka 5x^{2}.
5x^{2}+6x+1+4=16
Pahekotia te -2x me 8x, ka 6x.
5x^{2}+6x+5=16
Tāpirihia te 1 ki te 4, ka 5.
5x^{2}+6x+5-16=0
Tangohia te 16 mai i ngā taha e rua.
5x^{2}+6x-11=0
Tangohia te 16 i te 5, ka -11.
a+b=6 ab=5\left(-11\right)=-55
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 5x^{2}+ax+bx-11. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,55 -5,11
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -55.
-1+55=54 -5+11=6
Tātaihia te tapeke mō ia takirua.
a=-5 b=11
Ko te otinga te takirua ka hoatu i te tapeke 6.
\left(5x^{2}-5x\right)+\left(11x-11\right)
Tuhia anō te 5x^{2}+6x-11 hei \left(5x^{2}-5x\right)+\left(11x-11\right).
5x\left(x-1\right)+11\left(x-1\right)
Tauwehea te 5x i te tuatahi me te 11 i te rōpū tuarua.
\left(x-1\right)\left(5x+11\right)
Whakatauwehea atu te kīanga pātahi x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=1 x=-\frac{11}{5}
Hei kimi otinga whārite, me whakaoti te x-1=0 me te 5x+11=0.
x^{2}-2x+1+\left(2x+2\right)^{2}=16
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
x^{2}-2x+1+4x^{2}+8x+4=16
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+2\right)^{2}.
5x^{2}-2x+1+8x+4=16
Pahekotia te x^{2} me 4x^{2}, ka 5x^{2}.
5x^{2}+6x+1+4=16
Pahekotia te -2x me 8x, ka 6x.
5x^{2}+6x+5=16
Tāpirihia te 1 ki te 4, ka 5.
5x^{2}+6x+5-16=0
Tangohia te 16 mai i ngā taha e rua.
5x^{2}+6x-11=0
Tangohia te 16 i te 5, ka -11.
x=\frac{-6±\sqrt{6^{2}-4\times 5\left(-11\right)}}{2\times 5}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 5 mō a, 6 mō b, me -11 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 5\left(-11\right)}}{2\times 5}
Pūrua 6.
x=\frac{-6±\sqrt{36-20\left(-11\right)}}{2\times 5}
Whakareatia -4 ki te 5.
x=\frac{-6±\sqrt{36+220}}{2\times 5}
Whakareatia -20 ki te -11.
x=\frac{-6±\sqrt{256}}{2\times 5}
Tāpiri 36 ki te 220.
x=\frac{-6±16}{2\times 5}
Tuhia te pūtakerua o te 256.
x=\frac{-6±16}{10}
Whakareatia 2 ki te 5.
x=\frac{10}{10}
Nā, me whakaoti te whārite x=\frac{-6±16}{10} ina he tāpiri te ±. Tāpiri -6 ki te 16.
x=1
Whakawehe 10 ki te 10.
x=-\frac{22}{10}
Nā, me whakaoti te whārite x=\frac{-6±16}{10} ina he tango te ±. Tango 16 mai i -6.
x=-\frac{11}{5}
Whakahekea te hautanga \frac{-22}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=1 x=-\frac{11}{5}
Kua oti te whārite te whakatau.
x^{2}-2x+1+\left(2x+2\right)^{2}=16
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
x^{2}-2x+1+4x^{2}+8x+4=16
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2x+2\right)^{2}.
5x^{2}-2x+1+8x+4=16
Pahekotia te x^{2} me 4x^{2}, ka 5x^{2}.
5x^{2}+6x+1+4=16
Pahekotia te -2x me 8x, ka 6x.
5x^{2}+6x+5=16
Tāpirihia te 1 ki te 4, ka 5.
5x^{2}+6x=16-5
Tangohia te 5 mai i ngā taha e rua.
5x^{2}+6x=11
Tangohia te 5 i te 16, ka 11.
\frac{5x^{2}+6x}{5}=\frac{11}{5}
Whakawehea ngā taha e rua ki te 5.
x^{2}+\frac{6}{5}x=\frac{11}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
x^{2}+\frac{6}{5}x+\left(\frac{3}{5}\right)^{2}=\frac{11}{5}+\left(\frac{3}{5}\right)^{2}
Whakawehea te \frac{6}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{5}. Nā, tāpiria te pūrua o te \frac{3}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{6}{5}x+\frac{9}{25}=\frac{11}{5}+\frac{9}{25}
Pūruatia \frac{3}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{6}{5}x+\frac{9}{25}=\frac{64}{25}
Tāpiri \frac{11}{5} ki te \frac{9}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{3}{5}\right)^{2}=\frac{64}{25}
Tauwehea x^{2}+\frac{6}{5}x+\frac{9}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{5}\right)^{2}}=\sqrt{\frac{64}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{5}=\frac{8}{5} x+\frac{3}{5}=-\frac{8}{5}
Whakarūnātia.
x=1 x=-\frac{11}{5}
Me tango \frac{3}{5} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}