( x - \frac { 3 - \sqrt { 5 } } { 2 } ) ( x - \frac { \sqrt { 5 } + 3 } { 2 }
Aromātai
x^{2}-3x+1
Tauwehe
\left(x-\frac{3-\sqrt{5}}{2}\right)\left(x-\frac{\sqrt{5}+3}{2}\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{2x}{2}-\frac{3-\sqrt{5}}{2}\right)\left(x-\frac{\sqrt{5}+3}{2}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x ki te \frac{2}{2}.
\frac{2x-\left(3-\sqrt{5}\right)}{2}\left(x-\frac{\sqrt{5}+3}{2}\right)
Tā te mea he rite te tauraro o \frac{2x}{2} me \frac{3-\sqrt{5}}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{2x-3+\sqrt{5}}{2}\left(x-\frac{\sqrt{5}+3}{2}\right)
Mahia ngā whakarea i roto o 2x-\left(3-\sqrt{5}\right).
\frac{2x-3+\sqrt{5}}{2}\left(\frac{2x}{2}-\frac{\sqrt{5}+3}{2}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x ki te \frac{2}{2}.
\frac{2x-3+\sqrt{5}}{2}\times \frac{2x-\left(\sqrt{5}+3\right)}{2}
Tā te mea he rite te tauraro o \frac{2x}{2} me \frac{\sqrt{5}+3}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{2x-3+\sqrt{5}}{2}\times \frac{2x-\sqrt{5}-3}{2}
Mahia ngā whakarea i roto o 2x-\left(\sqrt{5}+3\right).
\frac{\left(2x-3+\sqrt{5}\right)\left(2x-\sqrt{5}-3\right)}{2\times 2}
Me whakarea te \frac{2x-3+\sqrt{5}}{2} ki te \frac{2x-\sqrt{5}-3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(2x-3+\sqrt{5}\right)\left(2x-\sqrt{5}-3\right)}{4}
Whakareatia te 2 ki te 2, ka 4.
\frac{4x^{2}-2x\sqrt{5}-6x-6x+3\sqrt{5}+9+2\sqrt{5}x-\left(\sqrt{5}\right)^{2}-3\sqrt{5}}{4}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 2x-3+\sqrt{5} ki ia tau o 2x-\sqrt{5}-3.
\frac{4x^{2}-2x\sqrt{5}-12x+3\sqrt{5}+9+2\sqrt{5}x-\left(\sqrt{5}\right)^{2}-3\sqrt{5}}{4}
Pahekotia te -6x me -6x, ka -12x.
\frac{4x^{2}-12x+3\sqrt{5}+9-\left(\sqrt{5}\right)^{2}-3\sqrt{5}}{4}
Pahekotia te -2x\sqrt{5} me 2\sqrt{5}x, ka 0.
\frac{4x^{2}-12x+3\sqrt{5}+9-5-3\sqrt{5}}{4}
Ko te pūrua o \sqrt{5} ko 5.
\frac{4x^{2}-12x+3\sqrt{5}+4-3\sqrt{5}}{4}
Tangohia te 5 i te 9, ka 4.
\frac{4x^{2}-12x+4}{4}
Pahekotia te 3\sqrt{5} me -3\sqrt{5}, ka 0.
1-3x+x^{2}
Whakawehea ia wā o 4x^{2}-12x+4 ki te 4, kia riro ko 1-3x+x^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}