Whakaoti mō x
x>\frac{3}{8}
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-3x+\frac{9}{4}+2x\left(x-\frac{1}{2}\right)<3\left(x^{2}+\frac{1}{4}\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-\frac{3}{2}\right)^{2}.
x^{2}-3x+\frac{9}{4}+2x^{2}-x<3\left(x^{2}+\frac{1}{4}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te x-\frac{1}{2}.
3x^{2}-3x+\frac{9}{4}-x<3\left(x^{2}+\frac{1}{4}\right)
Pahekotia te x^{2} me 2x^{2}, ka 3x^{2}.
3x^{2}-4x+\frac{9}{4}<3\left(x^{2}+\frac{1}{4}\right)
Pahekotia te -3x me -x, ka -4x.
3x^{2}-4x+\frac{9}{4}<3x^{2}+\frac{3}{4}
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x^{2}+\frac{1}{4}.
3x^{2}-4x+\frac{9}{4}-3x^{2}<\frac{3}{4}
Tangohia te 3x^{2} mai i ngā taha e rua.
-4x+\frac{9}{4}<\frac{3}{4}
Pahekotia te 3x^{2} me -3x^{2}, ka 0.
-4x<\frac{3}{4}-\frac{9}{4}
Tangohia te \frac{9}{4} mai i ngā taha e rua.
-4x<-\frac{3}{2}
Tangohia te \frac{9}{4} i te \frac{3}{4}, ka -\frac{3}{2}.
x>\frac{-\frac{3}{2}}{-4}
Whakawehea ngā taha e rua ki te -4. I te mea he tōraro a -4, ka huri te ahunga koreōrite.
x>\frac{-3}{2\left(-4\right)}
Tuhia te \frac{-\frac{3}{2}}{-4} hei hautanga kotahi.
x>\frac{-3}{-8}
Whakareatia te 2 ki te -4, ka -8.
x>\frac{3}{8}
Ka taea te hautanga \frac{-3}{-8} te whakamāmā ki te \frac{3}{8} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}