Whakaoti mō x
x=-10
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-\frac{\frac{2\times 3+1}{3}\left(-\frac{3\times 7+1}{7}\right)\left(-\frac{2\times 11+2}{11}\right)}{\frac{1\times 9+1}{9}\left(-\frac{1\times 8+1}{8}\right)\times 1.6}=6\left(-\frac{1}{3}\right)
Me whakarea ngā taha e rua ki te -\frac{1}{3}.
x-\frac{\frac{6+1}{3}\left(-\frac{3\times 7+1}{7}\right)\left(-\frac{2\times 11+2}{11}\right)}{\frac{1\times 9+1}{9}\left(-\frac{1\times 8+1}{8}\right)\times 1.6}=6\left(-\frac{1}{3}\right)
Whakareatia te 2 ki te 3, ka 6.
x-\frac{\frac{7}{3}\left(-\frac{3\times 7+1}{7}\right)\left(-\frac{2\times 11+2}{11}\right)}{\frac{1\times 9+1}{9}\left(-\frac{1\times 8+1}{8}\right)\times 1.6}=6\left(-\frac{1}{3}\right)
Tāpirihia te 6 ki te 1, ka 7.
x-\frac{\frac{7}{3}\left(-\frac{21+1}{7}\right)\left(-\frac{2\times 11+2}{11}\right)}{\frac{1\times 9+1}{9}\left(-\frac{1\times 8+1}{8}\right)\times 1.6}=6\left(-\frac{1}{3}\right)
Whakareatia te 3 ki te 7, ka 21.
x-\frac{\frac{7}{3}\left(-\frac{22}{7}\right)\left(-\frac{2\times 11+2}{11}\right)}{\frac{1\times 9+1}{9}\left(-\frac{1\times 8+1}{8}\right)\times 1.6}=6\left(-\frac{1}{3}\right)
Tāpirihia te 21 ki te 1, ka 22.
x-\frac{\frac{7\left(-22\right)}{3\times 7}\left(-\frac{2\times 11+2}{11}\right)}{\frac{1\times 9+1}{9}\left(-\frac{1\times 8+1}{8}\right)\times 1.6}=6\left(-\frac{1}{3}\right)
Me whakarea te \frac{7}{3} ki te -\frac{22}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x-\frac{\frac{-22}{3}\left(-\frac{2\times 11+2}{11}\right)}{\frac{1\times 9+1}{9}\left(-\frac{1\times 8+1}{8}\right)\times 1.6}=6\left(-\frac{1}{3}\right)
Me whakakore tahi te 7 i te taurunga me te tauraro.
x-\frac{-\frac{22}{3}\left(-\frac{2\times 11+2}{11}\right)}{\frac{1\times 9+1}{9}\left(-\frac{1\times 8+1}{8}\right)\times 1.6}=6\left(-\frac{1}{3}\right)
Ka taea te hautanga \frac{-22}{3} te tuhi anō ko -\frac{22}{3} mā te tango i te tohu tōraro.
x-\frac{-\frac{22}{3}\left(-\frac{22+2}{11}\right)}{\frac{1\times 9+1}{9}\left(-\frac{1\times 8+1}{8}\right)\times 1.6}=6\left(-\frac{1}{3}\right)
Whakareatia te 2 ki te 11, ka 22.
x-\frac{-\frac{22}{3}\left(-\frac{24}{11}\right)}{\frac{1\times 9+1}{9}\left(-\frac{1\times 8+1}{8}\right)\times 1.6}=6\left(-\frac{1}{3}\right)
Tāpirihia te 22 ki te 2, ka 24.
x-\frac{\frac{-22\left(-24\right)}{3\times 11}}{\frac{1\times 9+1}{9}\left(-\frac{1\times 8+1}{8}\right)\times 1.6}=6\left(-\frac{1}{3}\right)
Me whakarea te -\frac{22}{3} ki te -\frac{24}{11} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x-\frac{\frac{528}{33}}{\frac{1\times 9+1}{9}\left(-\frac{1\times 8+1}{8}\right)\times 1.6}=6\left(-\frac{1}{3}\right)
Mahia ngā whakarea i roto i te hautanga \frac{-22\left(-24\right)}{3\times 11}.
x-\frac{16}{\frac{1\times 9+1}{9}\left(-\frac{1\times 8+1}{8}\right)\times 1.6}=6\left(-\frac{1}{3}\right)
Whakawehea te 528 ki te 33, kia riro ko 16.
x-\frac{16}{\frac{9+1}{9}\left(-\frac{1\times 8+1}{8}\right)\times 1.6}=6\left(-\frac{1}{3}\right)
Whakareatia te 1 ki te 9, ka 9.
x-\frac{16}{\frac{10}{9}\left(-\frac{1\times 8+1}{8}\right)\times 1.6}=6\left(-\frac{1}{3}\right)
Tāpirihia te 9 ki te 1, ka 10.
x-\frac{16}{\frac{10}{9}\left(-\frac{8+1}{8}\right)\times 1.6}=6\left(-\frac{1}{3}\right)
Whakareatia te 1 ki te 8, ka 8.
x-\frac{16}{\frac{10}{9}\left(-\frac{9}{8}\right)\times 1.6}=6\left(-\frac{1}{3}\right)
Tāpirihia te 8 ki te 1, ka 9.
x-\frac{16}{\frac{10\left(-9\right)}{9\times 8}\times 1.6}=6\left(-\frac{1}{3}\right)
Me whakarea te \frac{10}{9} ki te -\frac{9}{8} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x-\frac{16}{\frac{-90}{72}\times 1.6}=6\left(-\frac{1}{3}\right)
Mahia ngā whakarea i roto i te hautanga \frac{10\left(-9\right)}{9\times 8}.
x-\frac{16}{-\frac{5}{4}\times 1.6}=6\left(-\frac{1}{3}\right)
Whakahekea te hautanga \frac{-90}{72} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 18.
x-\frac{16}{-\frac{5}{4}\times \frac{8}{5}}=6\left(-\frac{1}{3}\right)
Me tahuri ki tau ā-ira 1.6 ki te hautau \frac{16}{10}. Whakahekea te hautanga \frac{16}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x-\frac{16}{\frac{-5\times 8}{4\times 5}}=6\left(-\frac{1}{3}\right)
Me whakarea te -\frac{5}{4} ki te \frac{8}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x-\frac{16}{\frac{-40}{20}}=6\left(-\frac{1}{3}\right)
Mahia ngā whakarea i roto i te hautanga \frac{-5\times 8}{4\times 5}.
x-\frac{16}{-2}=6\left(-\frac{1}{3}\right)
Whakawehea te -40 ki te 20, kia riro ko -2.
x-\left(-8\right)=6\left(-\frac{1}{3}\right)
Whakawehea te 16 ki te -2, kia riro ko -8.
x+8=6\left(-\frac{1}{3}\right)
Ko te tauaro o -8 ko 8.
x+8=\frac{6\left(-1\right)}{3}
Tuhia te 6\left(-\frac{1}{3}\right) hei hautanga kotahi.
x+8=\frac{-6}{3}
Whakareatia te 6 ki te -1, ka -6.
x+8=-2
Whakawehea te -6 ki te 3, kia riro ko -2.
x=-2-8
Tangohia te 8 mai i ngā taha e rua.
x=-10
Tangohia te 8 i te -2, ka -10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}