Whakaoti mō g
g=\frac{x^{2}-4}{2}
x\neq 0
Whakaoti mō x (complex solution)
x=-\sqrt{2\left(g+2\right)}
x=\sqrt{2\left(g+2\right)}\text{, }g\neq -2
Whakaoti mō x
x=\sqrt{2\left(g+2\right)}
x=-\sqrt{2\left(g+2\right)}\text{, }g>-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
xx=xx+x\times 4+2xg-x^{2}x
Whakareatia ngā taha e rua o te whārite ki te x.
x^{2}=xx+x\times 4+2xg-x^{2}x
Whakareatia te x ki te x, ka x^{2}.
x^{2}=x^{2}+x\times 4+2xg-x^{2}x
Whakareatia te x ki te x, ka x^{2}.
x^{2}=x^{2}+x\times 4+2xg-x^{3}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 1 kia riro ai te 3.
x^{2}+x\times 4+2xg-x^{3}=x^{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x\times 4+2xg-x^{3}=x^{2}-x^{2}
Tangohia te x^{2} mai i ngā taha e rua.
x\times 4+2xg-x^{3}=0
Pahekotia te x^{2} me -x^{2}, ka 0.
2xg-x^{3}=-x\times 4
Tangohia te x\times 4 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
2xg=-x\times 4+x^{3}
Me tāpiri te x^{3} ki ngā taha e rua.
2xg=-4x+x^{3}
Whakareatia te -1 ki te 4, ka -4.
2xg=x^{3}-4x
He hanga arowhānui tō te whārite.
\frac{2xg}{2x}=\frac{x^{3}-4x}{2x}
Whakawehea ngā taha e rua ki te 2x.
g=\frac{x^{3}-4x}{2x}
Mā te whakawehe ki te 2x ka wetekia te whakareanga ki te 2x.
g=\frac{x^{2}}{2}-2
Whakawehe x^{3}-4x ki te 2x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}