Whakaoti mō x
x = \frac{\sqrt{589} + 7}{6} \approx 5.2115537
x=\frac{7-\sqrt{589}}{6}\approx -2.878220367
Graph
Tohaina
Kua tāruatia ki te papatopenga
x=\left(3x-15\right)\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-5.
x=3x^{2}-6x-45
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-15 ki te x+3 ka whakakotahi i ngā kupu rite.
x-3x^{2}=-6x-45
Tangohia te 3x^{2} mai i ngā taha e rua.
x-3x^{2}+6x=-45
Me tāpiri te 6x ki ngā taha e rua.
7x-3x^{2}=-45
Pahekotia te x me 6x, ka 7x.
7x-3x^{2}+45=0
Me tāpiri te 45 ki ngā taha e rua.
-3x^{2}+7x+45=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-7±\sqrt{7^{2}-4\left(-3\right)\times 45}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, 7 mō b, me 45 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-3\right)\times 45}}{2\left(-3\right)}
Pūrua 7.
x=\frac{-7±\sqrt{49+12\times 45}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-7±\sqrt{49+540}}{2\left(-3\right)}
Whakareatia 12 ki te 45.
x=\frac{-7±\sqrt{589}}{2\left(-3\right)}
Tāpiri 49 ki te 540.
x=\frac{-7±\sqrt{589}}{-6}
Whakareatia 2 ki te -3.
x=\frac{\sqrt{589}-7}{-6}
Nā, me whakaoti te whārite x=\frac{-7±\sqrt{589}}{-6} ina he tāpiri te ±. Tāpiri -7 ki te \sqrt{589}.
x=\frac{7-\sqrt{589}}{6}
Whakawehe -7+\sqrt{589} ki te -6.
x=\frac{-\sqrt{589}-7}{-6}
Nā, me whakaoti te whārite x=\frac{-7±\sqrt{589}}{-6} ina he tango te ±. Tango \sqrt{589} mai i -7.
x=\frac{\sqrt{589}+7}{6}
Whakawehe -7-\sqrt{589} ki te -6.
x=\frac{7-\sqrt{589}}{6} x=\frac{\sqrt{589}+7}{6}
Kua oti te whārite te whakatau.
x=\left(3x-15\right)\left(x+3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x-5.
x=3x^{2}-6x-45
Whakamahia te āhuatanga tuaritanga hei whakarea te 3x-15 ki te x+3 ka whakakotahi i ngā kupu rite.
x-3x^{2}=-6x-45
Tangohia te 3x^{2} mai i ngā taha e rua.
x-3x^{2}+6x=-45
Me tāpiri te 6x ki ngā taha e rua.
7x-3x^{2}=-45
Pahekotia te x me 6x, ka 7x.
-3x^{2}+7x=-45
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-3x^{2}+7x}{-3}=-\frac{45}{-3}
Whakawehea ngā taha e rua ki te -3.
x^{2}+\frac{7}{-3}x=-\frac{45}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
x^{2}-\frac{7}{3}x=-\frac{45}{-3}
Whakawehe 7 ki te -3.
x^{2}-\frac{7}{3}x=15
Whakawehe -45 ki te -3.
x^{2}-\frac{7}{3}x+\left(-\frac{7}{6}\right)^{2}=15+\left(-\frac{7}{6}\right)^{2}
Whakawehea te -\frac{7}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{6}. Nā, tāpiria te pūrua o te -\frac{7}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{7}{3}x+\frac{49}{36}=15+\frac{49}{36}
Pūruatia -\frac{7}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{7}{3}x+\frac{49}{36}=\frac{589}{36}
Tāpiri 15 ki te \frac{49}{36}.
\left(x-\frac{7}{6}\right)^{2}=\frac{589}{36}
Tauwehea x^{2}-\frac{7}{3}x+\frac{49}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{6}\right)^{2}}=\sqrt{\frac{589}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{7}{6}=\frac{\sqrt{589}}{6} x-\frac{7}{6}=-\frac{\sqrt{589}}{6}
Whakarūnātia.
x=\frac{\sqrt{589}+7}{6} x=\frac{7-\sqrt{589}}{6}
Me tāpiri \frac{7}{6} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}