Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-2x^{2}=-2x-4
Tangohia te 2x^{2} mai i ngā taha e rua.
x-2x^{2}+2x=-4
Me tāpiri te 2x ki ngā taha e rua.
3x-2x^{2}=-4
Pahekotia te x me 2x, ka 3x.
3x-2x^{2}+4=0
Me tāpiri te 4 ki ngā taha e rua.
-2x^{2}+3x+4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-3±\sqrt{3^{2}-4\left(-2\right)\times 4}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 3 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-2\right)\times 4}}{2\left(-2\right)}
Pūrua 3.
x=\frac{-3±\sqrt{9+8\times 4}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-3±\sqrt{9+32}}{2\left(-2\right)}
Whakareatia 8 ki te 4.
x=\frac{-3±\sqrt{41}}{2\left(-2\right)}
Tāpiri 9 ki te 32.
x=\frac{-3±\sqrt{41}}{-4}
Whakareatia 2 ki te -2.
x=\frac{\sqrt{41}-3}{-4}
Nā, me whakaoti te whārite x=\frac{-3±\sqrt{41}}{-4} ina he tāpiri te ±. Tāpiri -3 ki te \sqrt{41}.
x=\frac{3-\sqrt{41}}{4}
Whakawehe -3+\sqrt{41} ki te -4.
x=\frac{-\sqrt{41}-3}{-4}
Nā, me whakaoti te whārite x=\frac{-3±\sqrt{41}}{-4} ina he tango te ±. Tango \sqrt{41} mai i -3.
x=\frac{\sqrt{41}+3}{4}
Whakawehe -3-\sqrt{41} ki te -4.
x=\frac{3-\sqrt{41}}{4} x=\frac{\sqrt{41}+3}{4}
Kua oti te whārite te whakatau.
x-2x^{2}=-2x-4
Tangohia te 2x^{2} mai i ngā taha e rua.
x-2x^{2}+2x=-4
Me tāpiri te 2x ki ngā taha e rua.
3x-2x^{2}=-4
Pahekotia te x me 2x, ka 3x.
-2x^{2}+3x=-4
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-2x^{2}+3x}{-2}=-\frac{4}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\frac{3}{-2}x=-\frac{4}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}-\frac{3}{2}x=-\frac{4}{-2}
Whakawehe 3 ki te -2.
x^{2}-\frac{3}{2}x=2
Whakawehe -4 ki te -2.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=2+\left(-\frac{3}{4}\right)^{2}
Whakawehea te -\frac{3}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{4}. Nā, tāpiria te pūrua o te -\frac{3}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{3}{2}x+\frac{9}{16}=2+\frac{9}{16}
Pūruatia -\frac{3}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{41}{16}
Tāpiri 2 ki te \frac{9}{16}.
\left(x-\frac{3}{4}\right)^{2}=\frac{41}{16}
Tauwehea x^{2}-\frac{3}{2}x+\frac{9}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{41}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{4}=\frac{\sqrt{41}}{4} x-\frac{3}{4}=-\frac{\sqrt{41}}{4}
Whakarūnātia.
x=\frac{\sqrt{41}+3}{4} x=\frac{3-\sqrt{41}}{4}
Me tāpiri \frac{3}{4} ki ngā taha e rua o te whārite.